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INTRODUCTION

Most data warehousing and mining involves storing and
retrieving data either in numerical or symbolic form,
varying from tables of numbers to text. However, when
it comes to everyday images, sounds, and music, the
problem turns out to be far more complex. The major
problem with image data mining is not so much image
storage, per se, but rather how to automatically index,
extract, and retrieve image content (content-based re-
trieval [CBR]). Most current image data-mining tech-
nologies encode image content by means of image
feature statistics such as color histograms, edge, tex-
ture, or shape densities. Two well- known examples of
CBR are IBM’s QBIC system used in the State Heritage
Museum and PICASSO (Corridoni, Del Bimbo & Pala,
1999) used for the retrieval of paintings. More recently,
there have been some developments in indexing and
retrieving images based on the semantics, particularly
in the context of multimedia, where, typically, there is
a need to index voice and video (semantic-based re-
trieval [SBR]). Recent examples include the study by
Lay and Guan (2004) on artistry-based retrieval of
artworks and that of Benitez and Chang (2002) on com-
bining semantic and perceptual information in multime-
dia retrieval for sporting events.

However, this type of concept or semantics-based image
indexing and retrieval requires new methods for encoding
and matching images, based on how content is structured,
and here we briefly review two approaches to this.

BACKGROUND

Generally speaking, image structure is defined in terms
of image features and their relations. For SBR, such
features and relations reference scene information.
These features typically are multi-scaled, varying from
pixel attributes derived from localized image windows
to edges, regions, and even larger image area properties.

MAIN THRUST

In recent years there has been an increasing interest in
SBR. However, this requires the development of meth-

ods for binding image content with semantics. In turn,
this reduces to the need for models and algorithms that
are capable of efficiently encoding and matching rela-
tional properties of images and associating these rela-
tional properties with semantic descriptions of what is
being sensed. To illustrate this approach, we briefly
discuss two representative examples of such methods:
(1) Bayesian Networks (Bayesian Nets) for SBR, based
first on multi-scaled image and then on image feature
models; (2) principal components analysis (also termed
latent semantic indexing or spectral methods).

Bayesian Network Approaches

Bayesian Nets have recently proved to be a powerful
method for SBR, since semantics are defined in terms
of the dependencies between image features (nodes),
their labels, and known states of what is being sensed.
Inference is performed by propagation probabilities
through the network. For example, Benitez et al. (2003)
have developed MediaNet, a knowledge representation
network and inference model for the retrieval of con-
ceptually defined scene properties integrated with natu-
ral language processing. In a similar way, Hidden Markov
Random Fields (HMRFs) have become a common class
of image models for binding images with symbolic
descriptions. In particular, Hierarchical Hidden Markov
Random Fields (HHMRF) provide a powerful SBR rep-
resentation. HHMRFs are defined over multi-scaled
image pixel or features defined by Gaussian or Laplacian
pyramids (Bouman & Shapiro, 1994). Each feature, or
pixel, x , at a given scale is measured (observed) to
evidence scene properties, states, s, corresponding to
semantic entities such as ground, buildings, and so
forth, as schematically illustrated in Figure 1. The rela-
tionships between states serves to define the grammar.
The link between observations and states defines, in this
approach, the image semantics. Accordingly, at each
scale, l, we have a set of observations and states, where
p(ol (x) /sl (x))  defines the dependency of the observation
at scale, l, on the state of the world (scene).

Specifically, the HHMRF assumes that the state at
a pixel, x , is dependent on the states of its neighboring
pixels at the same or neighboring levels of the pyramid.
A simple example of the expressiveness of this model is
a forestry scene. This could be an image region (label:
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forest) dependent on a set of regions labeled tree at the
next scale, which, in turn, are dependent on trunk,
branches, and leaves labels at the next scale, and so
forth. These labels have specific positional relations
over scales, and the observations for each label are
supported by their compatibilities and observations.

Consequently, the SBR query for finding forestry
images is translated into finding the posterior maximum
likelihood (MAP) of labeling the image regions, given
the forestry model. Using Bayes’ rule, this reduces to
the following optimization problem:

sl
*(x)) ∝argmax

S
{p(sl (x) /ol (x)) p(sl ±v (x ± u))}

u,v
∏

where l ± v  corresponds to the states above and below
level l of the hierarchy. In other words, the derived
labeling MAP probability is equivalent to a probabilistic
answer to the query if this image is a forestry scene.
There are many approaches to approximate solutions to
this problem, including relaxation labeling, expectation
maximization (EM), loopy belief propagation and the
junction tree algorithm (see definitions in Terms and
Definitions). All of these methods are concerned with
optimal propagation of evidence over different layers of
the graphical representation of the image, given the
model and the observations, and all have their limita-
tions. When the HHMRF model is approximated by a
triangulated image state model, the junction tree algo-
rithm is optimal. However, triangulating such hierarchi-
cal meshes is computationally expensive. On the other
hand, the other approaches mentioned previously are
not optimal, converging to local minima (Caetano &
Caelli, 2004).

When the structural information in the query and
image is defined in terms of features (i.e., regions or
edge segments) and their relational attributes, again,
HMRFs can be applied to image feature matching. In this

case, the HMRF is defined over graphs that depict fea-
tures and their relations. That is, consider two attributed
graphs, sG and xG , representing the image and the query,
respectively. We want to determine just how, if at all, the
query (graph) structure is embedded somewhere in the
image (graph). We define HMRF over the query graph,

xG . A single node in xG  is defined by ix , and in the graph

sG , by αs . Each node in each graph has vertex and edge
attributes, and the query corresponds to solving a sub-
graph isomorphism problem that involves the assignment
of each ix  a unique αs , assuming that there is only one
instance of the query structure embedded in the image,
although this can be generalized. In this formulation, the
HMRF model considers each node ix  in xG  as a random
variable that can assume any of S possible values corre-
sponding to the nodes of sG .

• The Observation Component: Using HMRF for-
malities, the similarity (distance: dist) between
vertex attributes of both graphs is consequently
defined as the observation matrix model

),()/( α
αα s

i
xi

i
xi yydistsxypB === .

• The Markov Component: Here, we use the bi-
nary (relational) attributes to construct the com-
patibility functions between states of neighboring
nodes. Assume that ix  and jx  are neighbors in the

HMRF (being connected in xG ). Similar to the
previously described unary attributes, we have
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• Optimization Problem and Solutions: Given
this general HMRF formulation for graph match-
ing, the optimal solution reduces to that of deriv-
ing a state vector ),..,( 1* Tsss =  where s

i Gs ∈  for

each vertex x
i Gx ∈  such that the MAP criterion is

satisfied, given the model ),( BA=λ  and data
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Specifically, we introduce two sets of HMRF mod-
els for solving this problem.

Figure 1. The hierarchical hidden Markov random
field (HHMRF) model for image understanding. Here,
the hidden state variables, X, at each scale are
evidenced by observations, Y, at the same scale and
the state dependencies within and between levels of
the hierarchy. The HHMRF is defined over pixels and/
or feature graphs.
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