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INTRODUCTION

Knowledge discovery refers to the process of extract-
ing new, interesting, and useful knowledge from data and
presenting it in an intelligible way to the user. Roughly,
knowledge discovery can be considered a three-step
process: preprocessing data; data mining, in which the
actual exploratory work is done; and interpreting the
results to the user. Here, I focus on the data-mining step,
assuming that a suitable set of data has been chosen
properly.

The patterns that we search for in the data are plau-
sible relationships, which agents may use to establish
cognitive links for reasoning. Such plausible relation-
ships can be expressed via association rules. Usually,
the criteria to judge the relevance of such rules are
either frequency based (Bayardo & Agrawal, 1999) or
causality based (for Bayesian networks, see Spirtes,
Glymour, & Scheines, 1993). Here, I will pursue a
different approach that aims at extracting what can be
regarded as structures of knowledge — relationships
that may support the inductive reasoning of agents and
whose relevance is founded on information theory. The
method that I will sketch in this article takes numerical
relationships found in data and interprets these relation-
ships as structural ones, using mostly algebraic tech-
niques to elaborate structural information.

BACKGROUND

Common sense and expert knowledge is most generally
expressed by rules, connecting a precondition and a
conclusion by an if-then construction. For example, you
avoid puddles on sidewalks because you are aware of the
fact that if you step into a puddle, then your feet might
get wet; similarly, a physician would likely expect a
patient showing the symptoms of fever, headache, and a
sore throat to suffer from a flu, basing his diagnosis on
the rule that if a patient has a fever, headache, and sore
throat, then the ailment is a flu, equipped with a suffi-
ciently high probability.

If-then rules are more formally denoted as condi-
tionals. The crucial point with conditionals is that they
carry generic knowledge that is applicable to different
situations. This fact makes them most interesting ob-

jects in artificial intelligence, in a theoretical as well as
in a practical respect. For instance, a sales assistant who
has a general knowledge about the preferences of his or
her customers can use this knowledge when consulting
any new customer.

Typically, two central problems have to be solved in
practical applications: First, where do the rules come
from? How can they be extracted from statistical data?
And second, how should rules be represented? How
should conditional knowledge be propagated and com-
bined for further inferences? Both of these problems
can be dealt with separately, but it is most rewarding to
combine them, that is, to discover rules that are most
relevant with respect to some inductive inference for-
malism and to build up the best model from the discov-
ered rules that can be used for queries.

MAIN THRUST

This article presents an approach to discover associa-
tion rules that are most relevant with respect to the
maximum entropy methods. Because entropy is related
to information, this approach can be considered as
aiming to find the most informative rules in data. The
basic idea is to exploit numerical relationships that are
observed by comparing (relative) frequencies, or ratios
of frequencies, and so forth, as manifestations of inter-
actions of underlying conditional knowledge.

My approach differs from usual knowledge discov-
ery and data-mining methods in various respects:

• It explicitly takes the instrument of inductive in-
ference into consideration.

• It is based on statistical information but not on
probabilities close to 1; actually, it mostly uses
only structural information obtained from the data.

• It is not based on observing conditional indepen-
dencies (as for learning causal structures), but
aims at learning relevant conditional dependen-
cies in a nonheuristic way.

• As a further novelty, it does not compute single,
isolated rules, but yields a set of rules by taking
into account highly complex interactions of rules.

• Zero probabilities computed from data are inter-
preted as missing information, not as certain
knowledge.



764

Mining Data with Group Theoretical Means

The resulting set of rules may serve as a basis for
maximum entropy inference. Therefore, the method
described in this article addresses minimality aspects,
as in Padmanabhan and Tuzhilin (2000), and makes use
of inference mechanisms, as in Cristofor and Simovici
(2002). Different from most approaches, however, it
exploits the inferential power of the maximum entropy
methods in full consequence and in a structural,
nonheuristic way.

Modelling Conditional Knowledge by
Maximum Entropy (ME)

Suppose a set R* = {(B1|A1)[x1], …, (Bn|An)[xn]} of
probabilistic conditionals is given. For instance, R*
may describe the knowledge available to a physician
when he has to make a diagnosis. Or R* may express
common sense knowledge, such as “Students are young
with a probability of (about) 80%” and “Singles (i.e.,
unmarried people) are young with a probability of (about)
70%”, the latter knowledge being formally expressed by
R* = { (young|student)[0.8], (young|single)[0.7] }.

Usually, these rule bases represent incomplete
knowledge, in that a lot of probability distributions are
apt to represent them. So learning or inductively repre-
senting the rules, respectively, means to take them as a
set of conditional constraints and to select a unique
probability distribution as the best model that can be
used for queries and further inferences. Paris (1994)
investigates several inductive representation techniques
in a probabilistic framework and proves that the prin-
ciple of maximum entropy (ME-principle) yields the
only method to represent incomplete knowledge in an
unbiased way, satisfying a set of postulates describing
sound common sense reasoning. The entropy H(P) of a
probability distribution P is defined as

H(P) = - Σw P(w) log P(w),

where the sum is taken over all possible worlds, w, and
measures the amount of indeterminateness inherent to
P. Applying the principle of maximum entropy, then,
means to select the unique distribution P* = ME(R*)
that maximizes H(P) among all distributions P that
satisfy the rules in R*. In this way, the ME-method
ensures that no further information is added, so the
knowledge R* is represented most faithfully.

Indeed, the ME-principle provides a most conve-
nient and founded method to represent incomplete
probabilistic knowledge (efficient implementations of
ME-systems are described in Roedder & Kern-Isberner,
2003). In an ME-environment, the expert has to list only
whatever relevant conditional probabilities he or she is
aware of. Furthermore, ME-modelling preserves the

generic nature of conditionals by minimizing the amount
of information being added, as shown in Kern-Isberner
(2001).

Nevertheless, modelling ME-rule bases has to be
done carefully so as to ensure that all relevant depen-
dencies are taken into account. This task can be difficult
and troublesome. Usually, the modelling rules are based
somehow on statistical data. So, a method to compute rule
sets appropriate for ME-modelling from statistical data is
urgently needed.

Structures of Knowledge

The most typical approach to discover interesting rules
from data is to look for rules with a significantly high
(conditional) probability and a concise antecedent
(Bayardo & Agrawal, 1999; Agarwal, Aggarwal, & Prasad,
2000; Fayyad & Uthurusamy, 2002; Coenen,
Goulbourne, & Leng, 2001). Basing relevance on fre-
quencies, however, is sometimes unsatisfactory and
inadequate, particularly in complex domains such as
medicine. Further criteria to measure the interesting-
ness of the rules or to exclude redundant rules have also
been brought forth (Jaroszewicz & Simovici, 2001;
Bastide, Pasquier, Taouil, Stumme, & Lakhal, 2000;
Zaki, 2000). Some of these algorithms also make use of
optimization criteria, which are based on entropy
(Jaroszewicz & Simovici, 2002).

Mostly, the rules are considered as isolated pieces
of knowledge; no interaction between rules can be taken
into account. In order to obtain more structured infor-
mation, one often searches for causal relationships by
investigating conditional independencies and thus
noninteractivity between sets of variables (Spirtes et
al., 1993).

Although causality is undoubtedly most important
for human understanding, the concept seems to be too
rigid to represent human knowledge in an exhaustive way.
For instance, a person suffering from a flu is certainly sick
(P(sick | flu) = 1), and he or she often will complain about
headaches (P(headache | flu) = 0.9). Then you have
P(headache | flu) = P(headache | flu & sick), but you would
surely expect that P(headache | not flu) is different from
P(headache | not flu & sick)! Although the first equality
suggests a conditional independence between sick and
headache, due to the causal dependency between head-
ache and flu, the second inequality shows this to be (of
course) false. Furthermore, a physician might also state
some conditional probability involving sickness and head-
ache, so you obtain a complex network of rules. Each of
these rules will be considered relevant by the expert, but
none will be found when searching for conditional inde-
pendencies! So what, exactly, are the structures of knowl-
edge by which conditional dependencies (not indepen-



 

 

3 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/mining-data-group-theoretical-means/10699

Related Content

What's in a Name? Exploring the Metaphysical Implications of Data Warehousing in Concept and Practice
Elizabeth J. Davidson (2002). Data Warehousing and Web Engineering (pp. 113-136).

www.irma-international.org/chapter/name-exploring-metaphysical-implications-data/7865

Materialized Hypertext Views
Giuseppe Sindoni (2005). Encyclopedia of Data Warehousing and Mining (pp. 714-716).

www.irma-international.org/chapter/materialized-hypertext-views/10690

Multiple Hypothesis Testing for Data Mining
Sach Mukherjee (2005). Encyclopedia of Data Warehousing and Mining (pp. 848-853).

www.irma-international.org/chapter/multiple-hypothesis-testing-data-mining/10715

Expanding Data Mining Power with System Dynamics
Edilberto Casado (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications  (pp.

2688-2696).

www.irma-international.org/chapter/expanding-data-mining-power-system/7792

Using Data Mining Techniques to Probe the Role of Hydrophobic Residues in Protein Folding and

Unfolding Simulations
Cândida G. Silva, Pedro Gabriel Ferreira, Paulo J. Azevedoand Rui M.M. Brito (2010). Evolving Application Domains

of Data Warehousing and Mining: Trends and Solutions  (pp. 258-276).

www.irma-international.org/chapter/using-data-mining-techniques-probe/38227

http://www.igi-global.com/chapter/mining-data-group-theoretical-means/10699
http://www.igi-global.com/chapter/mining-data-group-theoretical-means/10699
http://www.irma-international.org/chapter/name-exploring-metaphysical-implications-data/7865
http://www.irma-international.org/chapter/materialized-hypertext-views/10690
http://www.irma-international.org/chapter/multiple-hypothesis-testing-data-mining/10715
http://www.irma-international.org/chapter/expanding-data-mining-power-system/7792
http://www.irma-international.org/chapter/using-data-mining-techniques-probe/38227

