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INTRODUCTION

One data mining activity is cluster analysis, of which there
are several types. One type deserving special attention is
clustering that arises due to evolutionary relationships
among organisms. Genetic data is often used to infer
evolutionary relations among a collection of species,
viruses, bacterial, or other taxonomic units (taxa). A phy-
logenetic tree (Figure 1, top) is a visual representation of
either the true or the estimated branching order of the taxa,
depending on the context. Because the taxa often cluster
in agreement with auxiliary information, such as geo-
graphic or temporal isolation, a common activity associ-
ated with tree estimation is to infer the number of clusters
and cluster memberships, which is also a common goal in
most applications of cluster analysis. However, tree esti-
mation is unique because of the types of data used and the
use of probabilistic evolutionary models which lead to
computationally demanding optimization problems. Fur-
thermore, novel methods to choose the number of clusters
and cluster memberships have been developed and will be
described here. The methods include a unique application
of model-based clustering, a maximum likelihood plus
bootstrap method, and a Bayesian method based on
obtaining samples from the posterior probability distribu-
tion on the space of possible branching orders.

BACKGROUND

Tree estimation is frequently applied to genetic data of
various types; we focus here on applications involving
DNA data, such as that from HIV. Trees are intended to
convey information about the genealogy of such viruses
and the most genetically similar viruses are most likely to
be most related. However, because the evolutionary pro-
cess includes random effects, there is no guarantee that
“closer in genetic distance” implies “closer in time,” for
every pair of sequences.

Sometimes the cluster analysis must be applied to
large numbers of taxa, or applied repeatedly to the same
number of taxa. For example, Burr, Myers, and Hyman
(2001) recently investigated how many subtypes (clus-
ters) arise under a simple model of how the env (gp120)
region of HIV-1, group M sequences (Figure 1, top) are

evolving. One question was whether the subtypes of
group M could be explained by the past population
dynamics of the virus. For each of many simulated data
sets each having approximately 100 taxa, model-based
clustering was applied to automate the process of choos-
ing the number of clusters. The novel application of
model-based clustering and its potential for scaling to
large numbers of taxa will be described, along with the two
methods mentioned in the introduction section.

It is well-known that cluster analysis results can de-
pend strongly on the metric. There are at least three
unique metric-related features of DNA data. First, the
DNA data is categorical. Second, a favorable trend in
phylogenetic analysis of DNA data is to choose the
evolutionary model using goodness of fit or likelihood
ratio tests (Huelsenbeck & Rannala, 1997). For nearly all
of the currently used evolutionary models, there is an
associated distance measure. Therefore, there is the po-
tential to make an objective metric choice. Third, the
evolutionary model is likely to depend on the region of the
genome. DNA regions that code for amino acids are more
constrained over time due to selective pressure and there-
fore are expected to have a smaller rate of change than
non-coding sequences.

A common evolutionary model is as follows (readers
who are uninterested in the mathematical detail should
skip this paragraph). Consider a pair of taxa denoted x and
y. Define Fxy as

AA AC AG AT

CA CC CG CT
xy

GA GC GG GT

TA TC TG TT
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where N is the number of base pairs (sites) in set of aligned
sequences, nAA is the number of sites with taxa x and y
both having an A, nAC is the number of sites with taxa x
having an A and taxa y having a C, etc. The most general
time-reversible model (GTR) for which a distance measure
has been defined (Swofford, Olsen, Waddell, & Hillis,
1996) defines the distance between taxa x and y as dxy =
-trace{Π log(Π-1Fxy)} where Π is a diagonal matrix of the
average base frequencies in taxa x and y and the trace is
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the sum of diagonal elements. The GTR is fully specified
by 5 relative rate parameters (a, b, c, d, e) and 3 relative
frequency parameters (πA, πC, and πG with πT determined
via πA+ πC + πG + πT = 1) in the rate matrix Q defined as

/
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where µ is the overall substitution rate. The rate matrix Q
is related to the substitution probability matrix P via Pij(t)=
eQt, where Pij(t) is the probability of a change from
nucleotide i to j in time t and P ij(t) satisfies the time
reversibility and stationarity criteria: πiPij = πjPji. Com-
monly used models such as Jukes-Cantor (Swofford et
al. 1996) assumes that a = b = c = d = e = 1 and πA=
πC = πG= πT= 0.25.  For the Jukes-Cantor model, it

follows that Pij(t) = 0.25 + 0.75e-µt and that the distance
between taxa x and y is –3/4 log(1 - 4/3D) where D is the
percentage of sites where x and y differ (regardless of what
kind of difference because all relative substitution rates
and base frequencies are assumed to be equal). Important
generalizations include allowing unequal relative frequen-
cies and/or rate parameters), and to allow the rate µ to vary
across DNA sites. Allowing  µ to vary across sites via a
gamma-distributed rate parameter is one way to model the
fact that sites often have different observed rates. If the rate
µ is assumed to follow a gamma distribution with shape
parameter γ then these “gamma distances” can be obtained
from the original distances by replacing the function log(x)
with γ(1-x-1/γ) in the dxy = -trace{P log(P-1Fxy)} formula
(Swofford et al. 1996).  Generally, this rate heterogeneity
and the fact that multiple substitutions at the same site
tend to saturate any distance measure make it a practical
challenge to find a metric such that the distance between
any two taxa increases linearly with time.

Figure 1. HIV Data (env region). (Top) Hierarchical Clustering; (Middle) Principle Coordinate plot; (Bottom)
Results of model-based clustering under six different assumptions regarding volume (V), shape (S), and orientation
(O). E denotes “equal” among clusters and “V” denotes “varying” among clusters, for V, S, and O respectively. For
example, case 6 has varying V, equal S, and varying O among clusters. Models 1 and 2 each assume a spherical shape
(I denotes the identify matrix, so S and O are equal among clusters, while V is equal for case 1 and varying for case
2 ). Note that the B and D subtypes tend to be merged.
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