
710

������������
���������
���
�����������

Giuseppe Sindoni
ISTAT - National Institute of Statistics, Italy

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

A hypertext view is a hypertext containing data from an
underlying database. The materialization of such
hypertexts, that is, the actual storage of their pages in the
site server, is often a valid option1. Suitable auxiliary data
structures and algorithms must be designed to guarantee
consistency between the structures and contents of each
heterogeneous component where base data is stored and
those of the derived hypertext view.

This topic covers the maintenance features required
by the derived hypertext to enforce consistency between
page content and database status (Sindoni, 1998). Spe-
cifically, the general problem of maintaining hypertexts
after changes in the base data and how to incrementally
and automatically maintain the hypertext view are dis-
cussed and a solution using a Definition Language for
Web page generation and an algorithm and auxilary data
structure for automatic and incremental hypertext view
maintenance is presented.

BACKGROUND

Some additional maintenance features are required by a
materialized hypertext to enforce consistency between
page contents and the current database status. In fact,
every time a transaction is issued on the database, its
updates must be efficiently and effectively extended to
the derived hypertext. In particular, (i) updates must be
incremental, that is, only the hypertext pages dependent
on database changes must be updated and (ii) all data-
base updates must propagate to the hypertext.

The principle of incremental maintenance has been
previously explored by several authors in the context of
materialized database views (Blakeley et al., 1986; Gupta
et al., 2001; Paraboschi et al., 2003; Vista, 1998; Zhuge et
al., 1995). Paraboschi et al. (2003) give a useful overview
of the materialized view maintenance problem in the con-
text of multidimensional databases. Blakeley et al. (1986)
propose a method in which all database updates are first
filtered to remove those that cannot possibly affect the
view. For the remaining updates, they apply a differential
algorithm to re-evaluate the view expression. This ex-

ploits the knowledge provided by both the view definition
expression and the database update operations. Gupta et
al. (2001) consider a variant of the view maintenance
problem: to keep a materialized view up-to-date when the
view definition itself changes. They try to “adapt” the
view in response to changes in the view definition. Vista
(1998) reports on the integration of view maintenance
policies into a database query optimizer. She presents the
design, implementation and use of a query optimizer
responsible for the generation of both maintenance ex-
pressions to be used for view maintenance and execution
plans. Zhuge et al. (1995) show that decoupling of the
base data (at the sources) from the view definition and
view maintenance machinery (at the warehouse) can lead
the warehouse to compute incorrect views. They intro-
duce an algorithm that eliminates the anomalies.

Fernandez et al. (2000), Sindoni (1998) and Labrinidis
& Roussopoulos (2000) have brought these principles to
the Web hypertext field. Fernandez et al. (2000) provide a
declarative query language for hypertext view specifica-
tion and a template language for specification of its HTML
representation. Sindoni (1998) deals with the maintenance
issues required by a derived hypertext to enforce consis-
tency between page content and database state. Hypertext
views are defined as nested oid-based views over the set
of base relations. A specific logical model is used to
describe the structure of the hypertext and a nested
relational algebra extended with an oid invention operator
is proposed, which allows views and view updates to be
defined. Labrinidis & Roussopoulos (2000) analytically
and quantitatively compare three materialization policies
(inside the DBMS, at the web server and virtual). Their
results indicate that materialization at the Web server is
a more scalable solution and can facilitate an order of
magnitude more users than the other two policies, even
under high update workloads.

The orthogonal problem of deferring maintenance
operations, thus allowing the definition of different poli-
cies, has been studied by Bunker et al. (2001), who provide
an overview of the view maintenance subsystem of a
commercial data warehouse system. They describe opti-
mizations and discuss how the system’s focus on star
schemas and data warehousing influences the mainte-
nance subsystem.

 711

Materialized Hypertext View Maintenance

�
MAIN THRUST

With respect to incremental view maintenance, the het-
erogeneity caused by the semistructured nature of views,
different data models and formats between base data and
derived views makes the materialized hypertext view dif-
ferent to the database view context and introduces some
new issues.

Hypertexts are normally modeled by object-like mod-
els, because of their nested and network-like structure.
Thus with respect to relational materialized views, where
base tables and views are modeled using the same logical
model, maintaining a hypertext view derived from rela-
tional base tables involves the additional challenge of
taking into account for the materialized views a different
data model to that of base tables.

In addition each page is physically stored as a marked-
up text file, possibly on a remote server. Direct access to
single values on the page is thus not permitted. Whenever
a page needs to be updated, it must therefore be com-
pletely regenerated from the new database status. Fur-
thermore, consistency between pages must be preserved,
which is an operation analogous to the one of preserving
consistency between nested objects.

The problem of dynamically maintaining consistency
between base data and derived hypertext is the hypertext
view maintenance problem. It has been addressed in the
framework of the STRUDEL project (Fernandez et al.,
2000) as the problem of incremental view updates for
semistructured data, by Sindoni (1998) and by Labrinidis
& Roussopoulos (2000).

There are a number of related issues:

• different maintenance policies should be allowed
(immediate or deferred);

• this implies the design of auxiliary data structures
to keep track of database updates, but their man-
agement overloads the system and they must there-
fore be as light as possible;

• finally, due to the particular network structure of
a hypertext, consistency must be maintained not
only between the single pages and the database, but
also between page links.

To deal with such issues, a manipulation language for
derived hypertexts; an auxiliary data structure for (i)
representing the dependencies between the database and
hypertext and (ii) logging database updates; and an
algorithm for automatic hypertext incremental mainte-
nance can be introduced. For example, hypertext views
and view updates can be defined using a logical model and
an algebra (Sindoni, 1998).

An auxiliary data structure allows information on the
dependencies between database tables and hypertext

pages to be maintained. It may be based on the concept
of view dependency graph, for the maintenance of the
hypertext class described by the logical model. A view
dependency graph stores information about the base
tables, which are used in the hypertext view definitions.

Finally, incremental page maintenance can be per-
formed by a maintenance algorithm that takes as its input
a set of changes on the database and produces a minimal
set of update instructions for hypertext pages. The algo-
rithm can be used whenever hypertext maintenance is
required.

A Manipulation Language for
Materialized Hypertexts

Once a derived hypertext has been designed with a logical
model and an algebra has been used to define its materi-
alization as a view on base tables, a manipulation lan-
guage is of course needed to populate the site with page
scheme instances2 and maintain them when database
tables are updated. The language is based on invocations
of algebra expressions.

The languages used for page creation and mainte-
nance may be very simple, such as that composed of only
two instructions: GENERATE and REMOVE. They allow ma-
nipulation of hypertext pages and can refer to the whole
hypertext, to all instances of a page scheme, or to pages
that satisfy a condition.

The GENERATE statement has the following general
syntax:

GENERATE ALL | <PAGESCHEME>
[WHERE <CONDITION>]

Its semantics essentially create the proper set of
pages, taking data from the base tables as specified by the
page scheme definitions. The ALL keyword allows gen-
eration of all instances of each page scheme. The REMOVE

statement has a similar syntax and allows the specified
sets of pages to be removed from the hypertext.

Incremental Maintenance of
Materialized Hypertexts

Whenever new data are inserted in the database, the
status of all affected tables changes and the hypertexts
whose content derives from those tables no longer reflect
the database’s current status. These pages must there-
fore be updated in line with the changes. An extension to
the system is thus needed to incrementally enforce con-
sistency between database and hypertext.

The simple “brute force” approach to the problem
would simply regenerate the whole hypertext from the new

2 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/materialized-hypertext-view-maintenance/10689

Related Content

Data Warehouse Maintenance, Evolution and Versioning
Johann Ederand Karl Wiggisser (2010). Data Warehousing Design and Advanced Engineering Applications: Methods

for Complex Construction (pp. 171-188).

www.irma-international.org/chapter/data-warehouse-maintenance-evolution-versioning/36614

Evolutionary Induction of Mixed Decision Trees
Marek Kretowskiand Marek Grzes (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and

Applications (pp. 3509-3523).

www.irma-international.org/chapter/evolutionary-induction-mixed-decision-trees/7846

Empowering the OLAP Technology to Support Complex Dimension Hierarchies
Svetlana Mansmannand Marc H. Scholl (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and

Applications (pp. 2164-2184).

www.irma-international.org/chapter/empowering-olap-technology-support-complex/7754

Managing Late Measurements in Data Warehouses
Matteo Golfarelliand Stefano Rizzi (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and

Applications (pp. 738-754).

www.irma-international.org/chapter/managing-late-measurements-data-warehouses/7673

Discretization for Continuous Attributes
Fabrice Muhlenbachand Ricco Rakotomalala (2005). Encyclopedia of Data Warehousing and Mining (pp. 397-402).

www.irma-international.org/chapter/discretization-continuous-attributes/10630

http://www.igi-global.com/chapter/materialized-hypertext-view-maintenance/10689
http://www.igi-global.com/chapter/materialized-hypertext-view-maintenance/10689
http://www.irma-international.org/chapter/data-warehouse-maintenance-evolution-versioning/36614
http://www.irma-international.org/chapter/evolutionary-induction-mixed-decision-trees/7846
http://www.irma-international.org/chapter/empowering-olap-technology-support-complex/7754
http://www.irma-international.org/chapter/managing-late-measurements-data-warehouses/7673
http://www.irma-international.org/chapter/discretization-continuous-attributes/10630

