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INTRODUCTION

Pattern classification is a very general concept with nu-
merous applications ranging from science, engineering,
target marketing, medical diagnosis, and electronic com-
merce to weather forecast based on satellite imagery. A
typical application of pattern classification is mass mail-
ing for marketing. For example, credit card companies
often mail solicitations to consumers. Naturally, they
would like to target those consumers who are most likely
to respond. Often, demographic information is available
for those who have responded previously to such solici-
tations, and this information may be used in order to target
the most likely respondents. Another application is elec-
tronic commerce of the new economy. E-commerce pro-
vides a rich environment to advance the state of the art in
classification, because it demands effective means for text
classification in order to make rapid product and market
recommendations.

Recent developments in data mining have posed new
challenges to pattern classification. Data mining is a
knowledge-discovery process whose aim is to discover
unknown relationships and/or patterns from a large set of
data, from which it is possible to predict future outcomes.
As such, pattern classification becomes one of the key
steps in an attempt to uncover the hidden knowledge
within the data. The primary goal is usually predictive
accuracy, with secondary goals being speed, ease of use,
and interpretability of the resulting predictive model.

While pattern classification has shown promise in
many areas of practical significance, it faces difficult
challenges posed by real-world problems, of which the
most pronounced is Bellman’s curse of dimensionality,
which states that the sample size required to perform
accurate prediction on problems with high dimensionality
is beyond feasibility. This is because, in high dimensional
spaces, data become extremely sparse and are apart from
each other. As a result, severe bias that affects any
estimation process can be introduced in a high-dimen-
sional feature space with finite samples.

Learning tasks with data represented as a collection of
a very large number of features abound. For example,
microarrays contain an overwhelming number of genes
relative to the number of samples. The Internet is a vast
repository of disparate information growing at an expo-
nential rate. Efficient and effective document retrieval and
classification systems are required to turn the ocean of
bits around us into useful information and, eventually,
into knowledge. This is a challenging task, since a word
level representation of documents easily leads 30,000 or
more dimensions.

This paper discusses classification techniques to
mitigate the curse of dimensionality and to reduce bias by
estimating feature relevance and selecting features ac-
cordingly. This paper has both theoretical and practical
relevance, since many applications can benefit from im-
provement in prediction performance.

BACKGROUND

In a classification problem, an observation is character-
ized by q  feature measurements ( ) q

qxx ℜ∈= ,,1 �x  and

is presumed to be a member of one of J  classes, jL ,

Jj ,,1�= . The particular group is unknown, and the
goal is to assign the given object to the correct group,
using its measured features x .

Feature relevance has a local nature. Therefore, any
chosen fixed metric violates the assumption of locally
constant class posterior probabilities, and fails to make
correct predictions in different regions of the input space.
In order to achieve accurate predictions, it becomes
crucial to be able to estimate the different degrees of
relevance that input features may have in various loca-
tions of the feature space.

Consider, for example, the rule that classifies a new
data point with the label of its closest training point in the
measurement space (1-Nearest Neighbor rule). Suppose
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that each instance is described by 20 features, but only
three of them are relevant to classifying a given instance.
In this case, two points that have identical values for the
three relevant features may, nevertheless, be distant from
one another in the 20-dimensional input space. As a
result, the similarity metric that uses all 20 features will be
misleading, since the distance between neighbors will be
dominated by the large number of irrelevant features. This
shows the effect of the curse of dimensionality phenom-
enon; that is, in high dimensional spaces, distances
between points within the same class or between different
classes may be similar. This fact leads to highly-biased
estimates. Nearest neighbor approaches (Ho, 1998; Lowe,
1995) are especially sensitive to this problem.

In many practical applications, things often are further
complicated. In the previous example, the three relevant
features for the classification task at hand may be depen-
dent on the location of the query point (i.e., the point to
be classified) in the feature space. Some features may be
relevant within a specific region, while other features may
be more relevant in a different region. Figure 1 illustrates
a case in point, where class boundaries are parallel to the
coordinate axes. For query a, dimension X is more rel-
evant, because a slight move along the X axis may change
the class label, while for query b, dimension Y is more
relevant. For query c, however, both dimensions are
equally relevant.

These observations have two important implications.
Distance computation does not vary with equal strength
or in the same proportion in all directions in the feature
space emanating from the input query. Moreover, the
value of such strength for a specific feature may vary from
location to location in the feature space. Capturing such
information, therefore, is of great importance to any clas-
sification procedure in high-dimensional settings.

MAIN THRUST

Severe bias can be introduced in pattern classification in
a high dimensional input feature space with finite samples.
In the following, we introduce adaptive metric techniques

for distance computation capable of reducing the bias of
the estimation.

Friedman (1994) describes an adaptive approach (the
Machete and Scythe algorithms) for classification that
combines some of the best features of kNN learning and
recursive partitioning. The resulting hybrid method in-
herits the flexibility of recursive partitioning to adapt the
shape of the neighborhood 0( )N x  of query 0x , as well as
the ability of nearest neighbor techniques to keep the
points within 0( )N x  close to the point being predicted.
The method is capable of producing nearly continuous
probability estimates with the region 0( )N x  centered at 0x
and the shape of the region separately customized for
each individual prediction point.

The major limitation concerning the Machete/Scythe
method is that, like recursive partitioning methods, it
applies a greedy strategy. Since each split is conditioned
on its ancestor split, minor changes in an early split, due
to any variability in parameter estimates, can have a
significant impact on later splits, thereby producing dif-
ferent terminal regions. This makes the predictions highly
sensitive to the sampling fluctuations associated with the
random nature of the process that produces the training
data and, therefore, may lead to high variance predictions.

In Hastie and Tibshirani (1996), the authors propose
a discriminant adaptive nearest neighbor classification
method (DANN), based on linear discriminant analysis.
Earlier related proposals appear in Myles and Hand (1990)
and Short and Fukunaga (1981). The method in Hastie and
Tibshirani (1996) computes a local distance metric as a
product of weighted within and between the sum of
squares matrices. The authors also describe a method of
performing global dimensionality reduction by pooling
the local dimension information over all points in the
training set (Hastie & Tibshirani, 1996a, 1996b).

While sound in theory, DANN may be limited in
practice. The main concern is that in high dimensions, one
may never have sufficient data to fill in qq ×  (within and
between sum of squares) matrices (where q  is the dimen-
sionality of the problem). Also, the fact that the distance
metric computed by DANN approximates the weighted
Chi-squared distance only when class densities are
Gaussian and have the same covariance matrix may cause
a performance degradation in situations where data do not
follow Gaussian distributions or are corrupted by noise,
which is often the case in practice.

A different adaptive nearest neighbor classification
method (ADAMENN) has been introduced to try to mini-
mize bias in high dimensions (Domeniconi, Peng &
Gunopulos, 2002) and to overcome the previously men-
tioned limitations. ADAMENN performs a Chi-squared
distance analysis to compute a flexible metric for produc-

Figure 1. Feature relevance varies with query locations
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