
678

�����
����������
����*�����
���-�����������
������
�
��

Chia-Hui Chang
National Central University, Taiwan

Chun-Nan Hsu
Institute of Information Science, Academia Sinica, Taiwan

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

The explosive growth and popularity of the World Wide
Web has resulted in a huge number of information sources
on the Internet. However, due to the heterogeneity and
the lack of structure of Web information sources, access
to this huge collection of information has been limited to
browsing and keyword searching. Sophisticated Web-
mining applications, such as comparison shopping, re-
quire expensive maintenance costs to deal with different
data formats. The problem in translating the contents of
input documents into structured data is called informa-
tion extraction (IE). Unlike information retrieval (IR), which
concerns how to identify relevant documents from a
document collection, IE produces structured data ready
for post-processing, which is crucial to many applications
of Web mining and search tools.

Formally, an information extraction task is defined by
its input and its extraction target. The input can be
unstructured documents like free text that are written in
natural language or semi-structured documents that are
pervasive on the Web, such as tables, itemized and
enumerated lists, and so forth. The extraction target of an
IE task can be a relation of k-tuple (where k is the number
of attributes in a record), or it can be a complex object with
hierarchically organized data. For some IE tasks, an at-
tribute may have zero (missing) or multiple instantiations
in a record. The difficulty of an IE task can be complicated
further when various permutations of attributes or typo-
graphical errors occur in the input documents.

Programs that perform the task of information extrac-
tion are referred to as extractors or wrappers. A wrapper
is originally defined as a component in an information
integration system that aims at providing a single uniform
query interface to access multiple information sources. In
an information integration system, a wrapper is generally
a program that wraps an information source (e.g., a data-
base server or a Web server) such that the information
integration system can access that information source
without changing its core query answering mechanism. In
the case where the information source is a Web server, a

wrapper must perform information extraction in order to
extract the contents in HTML documents.

Wrapper induction (WI) systems are software tools
that are designed to generate wrappers. A wrapper usu-
ally performs a pattern-matching procedure (e.g., a form of
finite-state machines), which relies on a set of extraction
rules. Tailoring a WI system to a new requirement is a task
that varies in scale, depending on the text type, domain,
and scenario. To maximize reusability and minimize main-
tenance cost, designing a trainable WI system has been
an important topic in research fields, including message
understanding, machine learning, pattern mining, and so
forth. The task of Web IE differs largely from traditional
IE tasks in that traditional IE aims at extracting data from
totally unstructured free texts that are written in natural
language. In contrast, Web IE processes online docu-
ments that are semi-structured and usually generated
automatically by a server-side application program. As a
result, traditional IE usually take advantage of natural
language processing techniques such as lexicons and
grammars, while Web IE usually applies machine learning
and pattern-mining techniques to exploit the syntactical
patterns or to lay out structures of the template-based
documents.

BACKGROUND

In the past few years, many approaches of WI systems
and how to apply machine learning and pattern mining
techniques to train WI systems have been proposed with
various degrees of automation. Kushmerick and Thomas
(2003) conducted a survey that categorizes WI systems
based on the wrapper programs’ underlying formalism
(whether they are finite-state approaches or Prolog-like
logic programming systems). Sarawagi (2002) further dis-
tinguished deterministic finite-state approaches from
probabilistic hidden Markov models in her 2002 VLDB
tutorial. Another survey can be found in Laender, et al.
(2002), which categorizes Web extraction tools into six
classes based on their underlying techniques—declara-

 679

Learning Information Extraction Rules for Web Data Mining

�
tive languages, HTML structure analysis, natural lan-
guage processing, machine learning, data modeling, and
ontology.

MAIN THRUST

We classify previous work in Web IE into three catego-
ries. The first category contains the systems that require
users to possess programming expertise. This category of
wrapper generation systems provides specialized lan-
guages or toolkits for wrapper construction, such as W4F
(Sahuguet & Azavant, 2001) and XWrap (Liu et al., 2000).
Such languages or toolkits were proposed as alternatives
to general-purpose languages in order to allow program-
mers to concentrate on formulating the extraction rules
without being concerned about the detailed process of
input strings. To apply these systems, users must learn
the language in order to write their extraction rules. There-
fore, such systems also feature user-friendly interfaces
for easy use of the toolkits. However, writing correct
extraction rules requires significant programming exper-
tise. In addition, since the structures of Web pages are not
always obvious and change frequently, writing special-
ized extraction rules can be time-consuming, error-prone,
and not scalable to a large number of Web sites. There-
fore, there is a need for automatic wrapper induction that
can generalize extraction rules for each distinct IE task.

The second category contains the WI systems that
require users to label some extraction targets as training
examples for WI systems to apply a machine-learning
algorithm to learn extraction rules from the training ex-
amples. No programming is needed to configure these WI
systems. Many IE tasks for Web mining belong to this
category; for example, IE for semi-structured text such as
RAPIER (Califf & Mooney, 1999), SRV (Freitag, 2000),
WHISK (Soderland, 1999), and for IE for template-based
pages such as WIEN (Kushmerick et al., 2000), SoftMealy
(Hsu and Dung, 1998), STALKER (Muslea, et al., 2001),
and so forth. Compared to the first category, these WI
systems are preferable, since general users, instead of
only programmers, can be trained to use these WI systems
for wrapper construction.

However, since the learned rules only apply to Web
pages from a particular Web site, labeling training ex-
amples can be laborious, especially when we need to
extract contents from thousands of data sources. There-
fore, researchers have focused on developing tools that
can reduce labeling effort. For instance, Muslea, et al.
(2002) proposed selective sampling, a form of active
learning that reduces the number of training examples.
Chidlovskii, et al. (2000) designed a wrapper generation
system that requires a small amount (one training record)
of labeling by the user. Earlier annotation-based WI

systems place emphasize on the learning techniques in
their paper. Recently, several works have been proposed
to simplify the annotation process. For example, Lixto
(Baumgartner et al., 2001), DEByE (Laender et al., 2002)
and OLERA (Chang & Kuo, 2004) are three such systems
that stress the importance of how annotation or examples
are received from users. Note that OLERA also features
the so-called semi-supervised approach, which receives
rough rather than exact and perfect examples from users
to reduce labeling effort.

The third category contains the WI systems that do
not require any preprocessing of the input documents by
the users. We call them annotation-free WI systems.
Example systems include IEPAD (Chang & Lui, 2001),
RoadRunner (Crescenzi et al., 2001), DeLa (Wang &
Lochovsky, 2003), and EXALG (Arasu & Garcia-Molina,
2003). Since no extraction targets are specified, such WI
systems make heuristic assumptions about the data to be
extracted. For example, the first three systems assume the
existence of multiple tuples to be extracted in one page;
therefore, the approach is to discover repeated patterns
in the input page. With such an assumption, IEPAD and
DeLa only apply to Web pages that contain multiple data
tuples. RoadRunner and EXALG, on the other hand, try to
extract structured data by deducing the template and the
schema of the whole page from multiple Web pages. Their
assumption is that strings that are stationary across
pages are presumably template, and strings that are vari-
ant are presumably schema and need to be extracted.
However, as commercial Web pages often contain mul-
tiple topics where a lot of information is embedded in a
page for navigation, decoration, and interaction pur-
poses, their systems may extract both useful and useless
information from a page. However, the criterion of what is
useful is quite subjective and depends on the application.
In summary, these approaches are, in fact, not fully
automatic. Rather, post-processing is required for users
to select useful data and to assign the data to a proper
attribute.

Task Difficulties

A critical issue of WI systems is what types of documents
and structuring variations can be handled. Documents
can be classified into structured, semi-structured, and
unstructured sets (Hsu & Dung, 1998). Early IE systems
like RAPIER, SRV, and WHISK are designed to handle
documents that contain semi-structured texts, while re-
cent IE systems are designed mostly to handle documents
that contain semi-structured data (Laender et al., 2002). In
this survey, we focus on semi-structured data extraction
and possible structure variation. These include missing
data attributes, multi-valued attributes, attribute permu-
tations, nested data structures, and so forth. Table 1 lists

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/learning-information-extraction-rules-web/10683

Related Content

Web Usage Mining Data Preparation
Bamshad Mobasher (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications (pp.

2551-2557).

www.irma-international.org/chapter/web-usage-mining-data-preparation/7782

Spatial Data Warehouse Modelling
Maria Luisa Damianiand Stefano Spaccapietra (2008). Data Warehousing and Mining: Concepts, Methodologies,

Tools, and Applications (pp. 659-678).

www.irma-international.org/chapter/spatial-data-warehouse-modelling/7668

Data Warehousing and Analytics in Banking: Concepts
L. Venkat Narayanan (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and Applications (pp.

1825-1839).

www.irma-international.org/chapter/data-warehousing-analytics-banking/7735

Data Cleaning Based on Entity Resolution
 (2014). Innovative Techniques and Applications of Entity Resolution (pp. 261-282).

www.irma-international.org/chapter/data-cleaning-based-on-entity-resolution/103253

Semi-Supervised Learning
Tobias Scheffer (2005). Encyclopedia of Data Warehousing and Mining (pp. 1022-1027).

www.irma-international.org/chapter/semi-supervised-learning/10746

http://www.igi-global.com/chapter/learning-information-extraction-rules-web/10683
http://www.igi-global.com/chapter/learning-information-extraction-rules-web/10683
http://www.irma-international.org/chapter/web-usage-mining-data-preparation/7782
http://www.irma-international.org/chapter/spatial-data-warehouse-modelling/7668
http://www.irma-international.org/chapter/data-warehousing-analytics-banking/7735
http://www.irma-international.org/chapter/data-cleaning-based-on-entity-resolution/103253
http://www.irma-international.org/chapter/semi-supervised-learning/10746

