
534

$��������	
��������	
��	��3������3��(��*

Ingrid Fischer
Friedrich-Alexander University Erlangen-Nürnberg, Germany

Copyright © 2006, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

As the beginning of the area of artificial neural networks,
the introduction of the artificial neuron of McCulloch and
Pitts is considered. They were inspired by the biological
neuron. Since then, many new networks or new algorithms
for neural networks have been invented with the result
that this area is not very clearly laid out. In most textbooks
on (artificial) neural networks (Rojas, 2000; Silipo, 2002),
there is no general definition on what a neural net is, but
rather an example-based introduction leading from the
biological model to some artificial successors. Perhaps
the most promising approach to define a neural network
is to see it as a network of many simple processors (units),
each possibly having a small amount of local memory. The
units are connected by communication channels (connec-
tions) that usually carry numeric (as opposed to sym-
bolic) data called the weight of the connection. The units
operate only on their local data and on the inputs they
receive via the connections. It is typical of neural net-
works that they have great potential for parallelism, since
the computations of the components are largely indepen-
dent of each other. Neural networks work best if the
system modeled by them has a high tolerance to error.
Therefore, one would not be advised to use a neural
network to balance one’s checkbook. However, they work
very well for:

• capturing associations or discovering regularities
within a set of patterns;

• any application where the number of variables or
diversity of the data is very great;

• any application where the relationships between
variables are vaguely understood; or,

• any application where the relationships are difficult
to describe adequately with conventional ap-
proaches.

Neural networks are not programmed but can be trained
in different ways. In supervised learning, examples are
presented to an initialized net. From the input and the
output of these examples, the neural net learns somehow.
There are as many learning algorithms as there are types
of neural nets. Also, learning is motivated physiologi-
cally. When an example is presented to a neural network
that it cannot recalculate, several different steps are

possible: changes can be done for a neuron, for the
connection’s weight or new connections, and neurons
can be inserted. For unsupervised learning, the results of
an input are not known.

There are many advantages and limitations to neural
network analysis, and to discuss this subject properly,
one must look at each individual type of network. Never-
theless, there is one specific limitation of neural networks
that potential users should be aware of. Neural networks
are more or less, depending on the different types, the
ultimate black boxes. The final result of the learning
process is a trained network that provides no equations
or coefficients defining a relationship beyond its own
internal mathematics.

Graphs are widely-used concepts within computer
science; in nearly every field, graphs serve as a tool for
visualization, summarization of dependencies, explana-
tion of connections, and so forth. Famous examples are all
kinds of different nets and graphs as semantic nets, petri
nets, flow charts, interaction diagrams, or neural net-
works. Invented first 35 years ago, graph transformations
have been expanding constantly. Wherever graphs are
used, graph transformations also are applied (Blostein &
Schürr, 1999; Ehrig et al., 1999a; Ehrig et al., 1999b;
Rozenberg, 1997).

Graph transformations are a very promising method
for modeling and programming neural networks. The
graph part is automatically given, as the name neural
network already indicates. Having graph transformations
as methodology, it is easy to model algorithms on this
graph structure. Structure-preserving and structure-
changing algorithms can be modeled equally well. This is
not the case for the widely used matrices programmed
mostly in C or C++. In these approaches, modeling
structure change becomes more difficult.

This leads directly to a second advantage. Graph
transformations have proven useful for visualizing the
network and its algorithms. Most modern neural network
simulators have some kind of visualization tool. Graph
transformations offer a basis for this visualization, as the
algorithms are already implemented in visual rules. Also,
in nearly all books, neural networks are visualized as
graphs.

When having a formal methodology at hand, it is also
possible to use it for proving properties of nets and
algorithms. Especially in this area, earlier results for graph

 535

Graph Transformations and Neural Networks

�
transformation systems can be used. Three possibilities
are especially promising: first, it is interesting whether an
algorithm is terminating. Though this question is unde-
cidable in the general case, the formal methods of graph
rewriting and general rewriting offer some chances to
prove termination for neural network algorithms. The
same holds for the question whether the result produced
by an algorithm is useful, whether the learning of a neural
network was successful. Then it helps to prove whether
two algorithms are equivalent. Finally, possible parallel-
ism in algorithms can be detected and described, based on
results for graph transformation systems.

BACKGROUND

A Short Introduction to Graph
Transformations

Despite the different approaches to handling graph trans-
formations, there are some properties that all approaches
have in common. When transforming a graph G somehow,
it is necessary to specify what part of the graph, what
subgraph L, has to be exchanged. For this subgraph, a new
graph R must be inserted. When applying such a rule to
a graph G, three steps are necessary:

• Choose an occurrence of L in G.
• Delete L from G.
• Insert R into the remainder of G.

In Figure 1, a sample application of a graph transfor-
mation rule is shown. The left-hand side L consists of
three nodes (1:, 2:, 3:) and three edges. This graph is
embedded into a graph G. Numbers in G indicate how the
nodes of L are matched. The embedding of edges is
straightforward. In the next step L is deleted from G, and
R is inserted. If L is simply deleted from G, hanging edges
remain. All edges ending/starting at 1:,2:,3: are missing
one node after deletion. With the help of numbers 1:,2:,3:
in the right-hand side R, it is indicated how these hanging
edges are attached to R inserted in G/L. The resulting
graph is H.

Simple graphs are not enough for modeling real-world
applications. Among the different extensions, two are of
special interest. First, graphs and graph rules can be
labeled. When G is labeled with numbers, L is labeled with
variables, and R is labeled with terms over L’s variables.
This way, calculations can be modeled. Taking our ex-
ample and extending G with numbers 1,2,3, the left-hand
side L with variables x,y,z and the right-hand side with
terms x+y, x-y, x×y, xy is shown in Figure 1. When L is
embedded in G, the variables are set to the numbers of the
corresponding nodes. The nodes in H are labeled with the
result of the terms in R when the variable settings resulting
from the embedding of L in G are used.

Also, application conditions can be added, restricting
the application of a rule. For example, the existence of a
certain subgraph A in G can be allowed or forbidden. A rule
only can be applied if A can be found resp. not found in
G. Additionally, label-based application conditions are
possible. This rule could be extended by asking for x < y.
Only in this case would the rule be applied.

Figure 1. The application of a graph rewrite rule L → R to a graph G

 L 1: x R 1: x+y x-y

 2: y z 3: 2: x×y xy 3:

G 1: 1 H 1: 3 -1

• 2: 2 3 • 2: 2 1 3:

 3:

 • •

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/graph-transformations-neural-networks/10655

Related Content

Reasoning about Frequent Patterns with Negation
Marzena Kryszkiewicz (2005). Encyclopedia of Data Warehousing and Mining (pp. 941-946).

www.irma-international.org/chapter/reasoning-frequent-patterns-negation/10731

Data Mining in Practice
Sherry Y. Chenand Xiaohui Liu (2008). Data Warehousing and Mining: Concepts, Methodologies, Tools, and

Applications (pp. 2273-2280).

www.irma-international.org/chapter/data-mining-practice/7760

OLAP with a Database Cluster
Uwe Rohm (2007). Data Warehouses and OLAP: Concepts, Architectures and Solutions (pp. 230-252).

www.irma-international.org/chapter/olap-database-cluster/7623

An Intelligent Support System Integrating Data Mining and Online Analytical Processing
Rahul Singh, Richard T. Redmondand Victoria Yoon (2008). Data Warehousing and Mining: Concepts, Methodologies,

Tools, and Applications (pp. 2964-2977).

www.irma-international.org/chapter/intelligent-support-system-integrating-data/7815

Evolution of Data Cube Computational Approaches
Rebecca Boon-Noi Tan (2005). Encyclopedia of Data Warehousing and Mining (pp. 469-476).

www.irma-international.org/chapter/evolution-data-cube-computational-approaches/10643

http://www.igi-global.com/chapter/graph-transformations-neural-networks/10655
http://www.igi-global.com/chapter/graph-transformations-neural-networks/10655
http://www.irma-international.org/chapter/reasoning-frequent-patterns-negation/10731
http://www.irma-international.org/chapter/data-mining-practice/7760
http://www.irma-international.org/chapter/olap-database-cluster/7623
http://www.irma-international.org/chapter/intelligent-support-system-integrating-data/7815
http://www.irma-international.org/chapter/evolution-data-cube-computational-approaches/10643

