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INTRODUCTION

Genetic programming (GP) is a subarea of evolutionary
computation first explored by John Koza (1992) and inde-
pendently developed by Nichael Lynn Cramer (1985). It is
a method for producing computer programs through ad-
aptation according to a user-defined fitness criterion, or
objective function.

GP systems and genetic algorithms (GAs) are related
but distinct approaches to problem solving by simulated
evolution. As in the GA methodology, GP uses a represen-
tation related to some computational model, but in GP,
fitness is tied to task performance by specific program
semantics. Instead of strings or permutations, genetic
programs most commonly are represented as variable-
sized expression trees in imperative or functional pro-
gramming languages, as grammars (O’Neill & Ryan, 2001)
or as circuits (Koza et al., 1999). GP uses patterns from
biological evolution to evolve programs:

• Crossover: Exchange of genetic material such as
program subtrees or grammatical rules.

• Selection: The application of the fitness criterion in
order to choose which individuals from a population
will go on to reproduce.

• Replication: The propagation of individuals from
one generation to the next.

• Mutation: The structural modification of individuals.

To work effectively, GP requires an appropriate set of
program operators, variables, and constants. Fitness in
GP typically is evaluated over fitness cases. In data
mining, this usually means training and validation data,
but cases also can be generated dynamically using a
simulator or be directly sampled from a real-world prob-
lem-solving environment. GP uses evaluation over these
cases to measure performance over the required task,
according to the given fitness criterion.

This article begins with a survey of the design of GP
systems and their applications to data-mining problems,
such as pattern classification, optimization of representa-
tions for inputs and hypotheses in machine learning,
grammar-based information extraction, and problem trans-
formation by reinforcement learning. It concludes with a
discussion of current issues in GP systems (i.e., scalability,
human-comprehensibility, code growth and reuse, and
incremental learning).

BACKGROUND

Although Cramer (1985) first described the use of cross-
over, selection, mutation, and tree representations for
using genetic algorithms to generate programs, Koza, et
al. (1992) is indisputably the field’s most prolific and
influential author (Wikipedia, 2004). In four books, Koza,
et al. (1992, 1994, 1999, 2003) have described GP-based
solutions to numerous toy problems and several impor-
tant real-world problems.

• State of the Field: To date, GPs have been applied
successfully to a few significant problems in ma-
chine learning and data mining, most notably sym-
bolic regression and feature construction. The
method is very computationally intensive, how-
ever, and it is still an open question in current
research whether simpler methods can be used in-
stead. These include supervised inductive learning,
deterministic optimization, randomized approxima-
tion using non-evolutionary algorithms (i.e., Markov
chain Monte Carlo approaches), genetic algorithms,
and evolutionary algorithms. It is postulated by GP
researchers that the adaptability of GPs to struc-
tural, functional, and structure-generating solutions
of unknown forms makes them more amenable to
solving complex problems. Specifically, Koza, et al.
(1999, 2003) demonstrate that, in many domains, GP
is capable of human-competitive automated discov-
ery of concepts deemed to be innovative through
technical review such as patent evaluation.

MAIN THRUST

The general strengths of genetic programming lie in its
ability to produce solutions of variable functional form,
reuse partial solutions, solve multi-criterion optimization
problems, and explore a large search space of solutions in
parallel. Modern GP systems also are able to produce
structured, object-oriented, and functional programming
solutions involving recursion or iteration, subtyping, and
higher-order functions.

A more specific advantage of GPs is their ability to
represent procedural, generative solutions to pattern
recognition and machine-learning problems. Examples of
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this include image compression and reconstruction (Koza,
1992) and several of the recent applications surveyed in
the following.

GP for Pattern Classification

GP in pattern classification departs from traditional super-
vised inductive learning in that it evolves solutions whose
functional form is not determined in advance, and in some
cases can be theoretically arbitrary. Koza (1992, 1994)
developed GPs for several pattern reproduction prob-
lems, such as the multiplexer and symbolic regression
problems.

Since then, there has been continuing work on induc-
tive GP for pattern classification (Kishore et al., 2000),
prediction (Brameier & Banzhaf, 2001), and numerical curve
fitting (Nikolaev & Iba, 2001). GP has been used to boost
performance in learning polynomial functions (Nikolaev &
Iba, 2001). More recent work on tree-based multi-crossover
schemes has produced positive results in GP-based design
of classification functions (Muni et al., 2004).

GP for Control of Inductive Bias,
Feature Construction, and Feature
Extraction

GP approaches to inductive learning face the general
problem of optimizing inductive bias: the preference for
groups of hypotheses over others on bases other than
pure consistency with training data or other fitness cases.
Krawiec (2002) approaches this problem by using GP to
preserve useful components of representation (features)
during an evolutionary run, validating them using the
classification data and reusing them in subsequent gen-
erations. This technique is related to the wrapper ap-
proach to knowledge discovery in databases (KDD),
where validation data is held out and used to select
examples for supervised learning or to construct or select
variables given as input to the learning system. Because
GP is a generative problem-solving approach, feature
construction in GP tends to involve production of new
variable definitions rather than merely selecting a subset.

Evolving dimensionally-correct equations on the ba-
sis of data is another area where GP has been applied.
Keijzer and Babovic (2002) provide a study of how GP
formulates its declarative bias and preferential (search-
based) bias. In this and related work, it is shown that a
proper units of measurement (strong typing) approach
can capture declarative bias toward correct equations,

whereas type coercion can implement even better prefer-
ential bias.

Grammar-Based GP for Data Mining

Not all GP-based approaches use expression tree-based
representations or functional program interpretation as
the computational model. Wong and Leung (2000) survey
data mining using grammars and formal languages. This
general approach has been shown to be effective for some
natural language learning problems, and extension of the
approach to procedural information extraction is a topic of
current research in the GP community.

GP Software Packages: Functionality
and Research Features

A number of GP software packages are available publicly
and commercially. General features common to most GP
systems for research and development include a very
high-period random number generator, such as the
Mersenne Twister for random constant generation and GP
operations; a variety of selection, crossover, and muta-
tion operations; and trivial parallelism (e.g., through multi-
threading).

One of the most popular packages for experimentation
with GP is Evolutionary Computation in Java, or ECJ (Luke
et al., 2004). ECJ implements the previously discussed
features as well as parsimony, strongly-typed GP, migra-
tion strategies for exchanging individual subpopulations
in island mode GP (a type of GP featuring multiple demes—
local populations or breeding groups), vector representa-
tions, and reconfigurability using parameter files.

Other Applications: Optimization,
Policy Learning

Like other genetic and evolutionary computation method-
ologies, GP is driven by fitness and suited to optimization
approaches to machine learning and data mining. Its
program-based representation makes it good for acquir-
ing policies by reinforcement learning.1 Many GP prob-
lems are error-driven or payoff-driven (Koza, 1992), in-
cluding the ant trail problems and foraging problems now
explored more heavily by the swarm intelligence and ant
colony optimization communities. A few problems use
specific information-theoretic criteria, such as maximum
entropy or sequence randomization.
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