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INTRODUCTION

The results of data warehousing and data mining are
depending essentially on the quality of data. Usually
data are assumed to be numbers or vectors, but this is
often not realistic. Especially the result of a measure-
ment of a continuous quantity is always not a precise
number, but more or less non-precise. This kind of
uncertainty is also called fuzziness and should not be
confused with errors. Data mining techniques have to
take care of fuzziness in order to avoid unrealistic
results.

BACKGROUND

In standard data warehousing and data analysis data are
treated as numbers, vectors, words, or symbols. These
data types do not take care of fuzziness of data and prior
information. Whereas some methodology for fuzzy data
analysis was developed, statistical data analysis is usu-
ally not taking care of fuzziness. Recently some meth-
ods for statistical analysis of non-precise data were
published (Viertl, 1996, 2003).

Historically fuzzy sets were first introduced by K. Menger
in 1951 (Menger, 1951). Later L. Zadeh made fuzzy models
popular. For more information on fuzzy modeling compare
(Dubois & Prade, 2000).

Most data analysis techniques are statistical tech-
niques. Only in the last 20 years alternative methods
using fuzzy models were developed. For a detailed discus-
sion compare (Bandemer & Näther, 1992; Berthold &
Hand, 2003).

MAIN THRUST

The main thrust of this chapter is to provide the quanti-
tative description of fuzzy data, as well as generalized
methods for the statistical analysis of fuzzy data.

Non-Precise Data

The result of one measurement of a continuous quantity
is not a precise real number but more or less non-

precise. For details see (Viertl, 2002). This kind of uncer-
tainty can be best described by a so-called fuzzy number.
A fuzzy number ∗x  is defined by a so-called characteriz-
ing function [ ]1,0: →RIξ  which obeys the following:

( ) 1: 00 =∈∃ xRIx ξ (1)

( ]1,0∈∀δ  the so-called cut−δ  ( )[ ]⋅ξδC  defined by

( )[ ] ( ){ } [ ]δδδ δξξ baxRIxC ,:: =≥∈=⋅  is a finite closed interval.
(2)

Examples of non-precise data are results on ana-
logue measurement equipments as well as readings on
digital instruments.

For continuous vector quantities real measurements
are not precise vectors but also non-precise. This im-
precision can result in a vector ( )∗∗

kxx ,,1 �  of fuzzy num-

bers ∗
ix , or more generally, in a so-called  k-dimen-

sional fuzzy vector ∗x .  Using the notation

( ) k
k RIxxx ∈= ,,1 �  a k-dimensional fuzzy vector is

defined by its  vector-characterizing function
[ ]1,0: →kRIζ  obeying

( ) 1: 00 =∈∃ xRIx k ζ  (1)

( ]1,0∈∀δ  the cut−δ  ( )[ ]⋅ζδC  defined by

( )[ ] ( ){ }δζζδ ≥∈=⋅ xRIxC k ::  is a compact simply con-
nected subset of kRI  (2)

Remark: A vector of fuzzy numbers is essentially
different from a fuzzy vector. But it is possible to
construct a fuzzy vector ∗x  from a vector ( ) ( )⋅⋅ kξξ ,,1 �  of
fuzzy numbers. The vector-characterizing function

( )⋅⋅ ,,�ζ  of ∗x  can be obtained by
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    ( ) ( ) ( ){ } ( ) k
kkkk RIxxxxxx ∈∀= ,,,,min,, 1111 ��� ξξζ

Examples of  2-dimensional fuzzy data are light
points on radar screens.

Descriptive Statistics with Fuzzy Data

Analysis of variable data by forming histograms has to
take care of fuzziness. This is possible based on the
characterizing functions ( )⋅iξ  of the observations ∗

ix  for

( )ni 11= . The height ∗
jh  over a class jK , ( )kj 11=  of the

histogram is a fuzzy number whose characterizing func-
tion ( )⋅jη  is obtained in the following way:

For each level−δ  the cut−δ

( )[ ] ( ) ( )[ ]jnjnj KhKhC δδδ η ,, ,=⋅  of  ( )⋅jη  is defined  by

( ) ( )[ ]{ }
n

KCx
Kh jii

jn
∅≠∩⋅

=
∗ ξ

δ
:#

,

( ) ( )[ ]{ }
n

KCx
Kh jii

jn

⊆⋅
=

∗ ξδ
δ

:#
, .

By the representation lemma of fuzzy numbers hereby
the characterizing functions ( ) ( )kjj 11, =⋅η  are determined:

  ( )
( ] ( )[ ]( ) RIxxIx

jCj ∈∀⋅= ⋅∈ ηδ δ
δη

1,0
max

The resulting generalized histogram is also called
fuzzy histogram. For more details compare (Viertl &
Hareter, 2004).

Fuzzy Probability Distributions

In standard data analysis probability densities are con-
sidered as limits of histograms. For fuzzy data limits of
fuzzy histograms are fuzzy valued functions ( )⋅∗f  whose
values ( )xf ∗  are fuzzy numbers. These fuzzy valued
functions are normalized by generalizing classical inte-
gration with the help of so-called curveslevel−δ  ( )⋅

δ
f

and  ( )⋅δf  of ( )⋅∗f , which are defined by the endpoints of
the cuts−δ  of  ( )xf ∗  for all ( )[ ]⋅∈ ∗fx Def :

      ( )[ ] ( ) ( )[ ]xfxfxfC δδδ ,=∗   for all ( )[ ]⋅∈ ∗fx  Def

The generalized integral of a fuzzy valued function
( )⋅∗f  defined on M  is a fuzzy number ∗I  denoted by

( )∫ ∗∗ −=
M

dxxfI ,

which is defined via its cuts−δ

[ ] ( ) ( ) ( ]1,0, ∈∀







= ∫ ∫∗ δδδδ

M M

dxxfdxxfIC

in case of integrable  level−δ curves ( )⋅
δ

f  and ( )⋅δf .
Fuzzy probability densities on measurable spaces

( )A,M  are special fuzzy valued functions ( )⋅∗f defined
on M  with integrable level−δ curves, for which

 ( )∫ ∗
+

∗ =−
M

dxxf 1 ,

where ∗
+1  is a fuzzy number fulfilling

 [ ]∗
+∈ 11 1C  and [ ] ( ) ( ]1,0,01 ∈∀∞⊆∗

+ δδC .

Based on fuzzy probability densities so-called fuzzy
probability distributions ∗P  on A  are defined in the
following way:

Denoting the set of all classical probability densi-
ties ( )⋅ϕ  on M  which are bounded by −δ level curves

( )⋅
δ

f  and ( )⋅δf  by

( ) ( ) ( ) ( ){ }MxxfxxfS ∈∀≤≤⋅= δδδ ϕϕ :

the fuzzy associated probability ( )AP∗  for all A∈A  is
the fuzzy number whose −δ cuts

( )[ ] ( ) ( )[ ]APAPAPC δδδ ,=∗ are defined by

( ) ( )∫
∈

=
AS

dxxAP ϕ
δϕ

δ sup

 ( ) ( )∫∈
=

A
S

dxxAP ϕ
δϕδ inf .

By this definition the probability of the extreme
events ∅  and M  are precise numbers, i.e.
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