469

Evolution of Data Cube Computational

Approaches

RebeccaBoon-Noi Tan
Monash University, Australia

INTRODUCTION

Aggregation is a commonly used operation in decision
support database systems. Users of decision support
queries are interested in identifying trends rather than
looking at individual records in isolation. Decision sup-
port system (DSS) queries consequently make heavy use
of aggregations, and the ability to simultaneously aggre-
gate across many sets of dimensions (in SQL terms, this
translates to many simultaneous group-bys) is crucial for
Online Analytical Processing (OLAP) or multidimensional
data analysis applications (Datta, VanderMeer, &
Ramamritham, 2002; Dehne, Eavis, Hambrusch, & Rau-
Chaplin, 2002; Elmasri & Navathe, 2004; Silberschatz,
Korth & Sudarshan, 2002).

BACKGROUND

Although aggregation functions together with another
operator, Group-by in SQL terms, have been widely used

in business application for the past few decades. Common
forms of data analysis include histograms, roll-up totals
and sub-totals for drill-downs and cross tabulation. The
three common forms are difficult to use with these SQL
aggregation constructs (Gray, Bosworth, Lyaman, &
Pirahesh, 1996). An explanation of the three common
problems: (a) Histograms, (b) Roll-up Totals and Sub-
Totals for drill-downs, and (c) Cross tabulation will be
presented.

Firstly the problem with histograms is that the SQL
standard Group-by operator does not allow a direct con-
struction with aggregation over computed categories.
Unfortunately, not all SQL systems directly support his-
tograms including the standard. In standard SQL, histo-
grams are computed indirectly from a table-valued expres-
sion which is then aggregated. However, the cube-by
operator is able to have direct construction. The histo-
gram can be easily obtained from the data cube using the
cube-by operator to compute the raw data. The histogram
on the right-hand side of Figure 1 shows the sales amount
as well as the sub-totals and total of a range of the

Figure 1. An example showing how a histogram is formed from results obtained from a data cube
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Figure 2. An example of cross-tabulation from a data cube
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products at a range of the time-frame on a particular
location.

The second problem relates to roll-ups totals and sub-
totals for drill-down. Reports commonly aggregate data
initially at a coarse level, and then at successively finer
levels. This type of report is difficult with the normal SQL
construct. However, the Cube-by operator is able to
present the roll-ups totals and sub-totals for drill-down
easily.

The third problem relates to cross-tabulation which is
difficult to construct with the current standard SQL. The
symmetric aggregation result is cross-tabulation table or
cross tab for short (known as a pivot-table in spread-
sheets). Using the cube-by operator, cross tab data can
be readily obtained which is routinely displayed in the
more compact format as shown in Figure 2. This cross tab
is a two dimensional aggregation within the red-dotted
line. If we add another location such as L002, it becomes
a 3D aggregation.

In summary, the problem of representing aggregate
data in a relational data model with the standard SQL can
be a difficult and daunting task. A six dimensional cross-
tab will require a 64 way union of 64 different group-by
operators in order to build the underlying representation.
This is an important reason why the use of Group-bys is
inadequate as the resulting representation of aggregation
is too complex for optimal analysis.

MAIN THRUST

Birth of cube-by operator

To overcome the difficulty with these SQL aggregation
constructs, (Gray et al., 1996) proposed using data cube
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operators (also known as cube-by) to conveniently sup-
port such aggregates. The data cube is identified as the
core operator in data warehousing and OLAP
(Lakshmanan, Pei & Zhao, 2003). The cube-by operator
computes group-bys corresponding to all possible com-
binations in a list of attributes. An example of data cube
query is as follows:

SeLECT Product, Year, City, SUM(amount)
Frowm Sales
Cusk BY Product, Year, City

The above query will produce the SUM of amount of
all tuples in the database according the 7 group-bys, i.e.
(Product, Year, City), (Product, Year), (Product, City),
(Year, City), (Product), (Year), (City). Lastly, the 8" group-
by denotes as ALL, which contains an empty attribute so
as to make all group-bys results union compatible. For
example, a cube-by of three attributes (ABC) in data cube
query will generate eight or 2* group-bys of ((ABC], [AB],
[AC], [BC], [A],[B],[C]and [ALL]).

The most straightforward way to execute the data
cube query is to rewrite it as a collection of eight group-
by queries and execute them separately as shown in
Figure 3. This means that the eight group-by queries will
need to access the raw data eight times. It is likely to be
quite expensive in execution time. [f the number of dimen-
sion attributes increases, it becomes very expensive to
compute the data cube. This is because the required
computation cost grows exponentially with the increase
of dimension attributes. For instance, ‘N’ number of
dimension attributes of cube-by will form a 2N number of
group-bys. However, there are a number of ways in which
this simple solution can be improved.
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