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INTRODUCTION

Several classes of computational and statistical meth-
ods for data mining are available. Each class can be
parameterised so that models within the class differ in
terms of such parameters (see, for instance, Giudici,
2003; Hastie et al., 2001; Han & Kamber, 2000; Hand et
al., 2001; Witten & Frank, 1999): for example, the class
of linear regression models, which differ in the number
of explanatory variables; the class of Bayesian net-
works, which differ in the number of conditional depen-
dencies (links in the graph); the class of tree models,
which differ in the number of leaves; and the class multi-
layer perceptrons, which differ in terms of the number
of hidden strata and nodes. Once a class of models has
been established the problem is to choose the “best”
model from it.

BACKGROUND

A rigorous method to compare models is statistical
hypothesis testing. With this in mind one can adopt a
sequential procedure that allows a model to be chosen
through a sequence of pairwise test comparisons. How-
ever, we point out that these procedures are generally
not applicable in particular to computational data min-
ing models, which do not necessarily have an underlying
probabilistic model and, therefore, do not allow the
application of statistical hypotheses testing theory. Fur-
thermore, it often happens that for a data problem it is
possible to use more than one type of model class, with
different underlying probabilistic assumptions. For ex-
ample, for a problem of predictive classification it is
possible to use both logistic regression and tree models
as well as neural networks.

We also point out that model specification and,
therefore, model choice is determined by the type of
variables used. These variables can be the result of
transformations or of the elimination of observations,
following an exploratory analysis. We then need to
compare models based on different sets of variables
present at the start. For example, how do we compare a
linear model with the original explanatory variables
with one with a set of transformed explanatory vari-
ables?

The previous considerations suggest the need for a
systematic study of the methods for comparison and
evaluation of data mining models.

MAIN THRUST

Comparison criteria for data mining models can be
classified schematically into: criteria based on statisti-
cal tests, based on scoring functions, computational
criteria, Bayesian criteria and business criteria.

Criteria Based on Statistical Tests

The first are based on the theory of statistical hypoth-
esis testing and, therefore, there is a lot of detailed
literature related to this topic. See, for example, a text
about statistical inference, such as Mood, Graybill, &
Boes (1991) and Bickel & Doksum (1977). A statistical
model can be specified by a discrete probability func-
tion or by a probability density function, f(x). Such
model is usually left unspecified, up to unknown quan-
tities that have to be estimated on the basis of the data at
hand. Typically, the observed sample it is not sufficient
to reconstruct each detail of f(x), but can indeed be used
to approximate f(x) with a certain accuracy. Often a
density function is parametric so that it is defined by a
vector of parameters Θ=(θ1 ,…,θI ), such that each value
θ of Θ corresponds to a particular density function,
p∅(x). In order to measure the accuracy of a parametric
model, one can resort to the notion of distance between
a model f, which underlies the data, and an approximat-
ing model g (see, for instance, Zucchini, 2000). Notable
examples of distance functions are, for categorical
variables: the entropic distance, which describes the
proportional reduction of the heterogeneity of the de-
pendent variable; the chi-squared distance, based on the
distance from the case of independence; and the 0-1
distance, which leads to misclassification rates. For
quantitative variables, the typical choice is the Euclid-
ean distance, representing the distance between two
vectors in a Cartesian space. Another possible choice is
the uniform distance, applied when nonparametric mod-
els are being used.

Any of the previous distances can be employed to
define the notion of discrepancy of an statistical model.
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The discrepancy of a model, g, can be obtained comparing
the unknown probabilistic model, f, and the best paramet-
ric statistical model. Since f is unknown, closeness can be
measured with respect to a sample estimate of the un-
known density f. A common choice of discrepancy func-
tion is the Kullback-Leibler divergence, which can be
applied to any type of observations. In such context, the
best model can be interpreted as that with a minimal loss
of information from the true unknown distribution.

It can be shown that the statistical tests used for model
comparison are generally based on estimators of the total
Kullback-Leibler discrepancy; the most used is the log-
likelihood score. Statistical hypothesis testing is based
on subsequent pairwise comparisons of log-likelihood
scores of alternative models. Hypothesis testing allows
one to derive a threshold below which the difference
between two models is not significant and, therefore, the
simpler models can be chosen.

Therefore, with statistical tests it is possible make
an accurate choice among the models. The defect of this
procedure is that it allows only a partial ordering of
models, requiring a comparison between model pairs
and, therefore, with a large number of alternatives it is
necessary to make heuristic choices regarding the com-
parison strategy (such as choosing among the forward,
backward and stepwise criteria, whose results may di-
verge). Furthermore, a probabilistic model must be
assumed to hold, and this may not always be possible.

Criteria Based on scoring functions

A less structured approach has been developed in the
field of information theory, giving rise to criteria based
on score functions. These criteria give each model a
score, which puts them into some kind of complete
order. We have seen how the Kullback-Leibler discrep-
ancy can be used to derive statistical tests to compare
models. In many cases, however, a formal test cannot be
derived. For this reason, it is important to develop
scoring functions that attach a score to each model. The
Kullback-Leibler discrepancy estimator is an example
of such a scoring function that, for complex models, can
be often be approximated asymptotically. A problem
with the Kullback-Leibler score is that it depends on the
complexity of a model as described, for instance, by the
number of parameters. It is thus necessary to employ
score functions that penalise model complexity.

The most important of such functions is the AIC
(Akaike Information Criterion)  (Akaike, 1974). From
its definition, notice that the AIC score essentially
penalises the loglikelihood score with a term that in-
creases linearly with model complexity. The AIC criterion
is based on the implicit assumption that q remains con-
stant when the size of the sample increases. However this

assumption is not always valid and therefore the AIC
criterion does not lead to a consistent estimate of the
dimension of the unknown model. An alternative, and
consistent, scoring function is the BIC criterion (Baye-
sian Information Criterion), also called SBC, formulated
by Schwarz (1978). As can be seen from its definition, the
BIC differs from the AIC only in the second part, which
now also depends on the sample size n. Compared to the
AIC, when n increases the BIC favours simpler models. As
n gets large, the first term (linear in n) will dominate the
second term (logarithmic in n). This corresponds to the
fact that, for a large n, the variance term in the mean
squared error expression tends to be negligible. We also
point out that, despite the superficial similarity between
the AIC and the BIC, the first is usually justified by
resorting to classical asymptotic arguments, while the
second by appealing to the Bayesian framework.

To conclude, the scoring function criteria for select-
ing models are easy to calculate and lead to a total
ordering of the models. From most statistical packages
we can get the AIC and BIC scores for all the models
considered. A further advantage of these criteria is that
they can be used also to compare non-nested models
and, more generally, models that do not belong to the
same class (for instance a probabilistic neural network
and a linear regression model).

However, the limit of these criteria is the lack of a
threshold, as well the difficult interpretability of their
measurement scale. In other words, it is not easy to
determine if the difference between two models is
significant or not, and how it compares to another
difference. These criteria are indeed useful in a prelimi-
nary exploratory phase. To examine this criteria and to
compare it with the previous ones see, for instance,
Zucchini (2000), or Hand, Mannila, & Smyth (2001).

Bayesian Criteria

A possible “compromise” between the previous two cri-
teria is the Bayesian criteria, which could be developed in
a rather coherent way (see, e.g., Bernardo & Smith,
1994). It appears to combine the advantages of the two
previous approaches: a coherent decision threshold and a
complete ordering. One of the problems that may arise is
connected to the absence of a general purpose software.
For data mining works using Bayesian criteria the reader
could see, for instance, Giudici (2001), Giudici & Castelo
(2003) and Brooks et al. (2003).

Computational Criteria

The intensive wide spread use of computational meth-
ods has led to the development of computationally inten-
sive model comparison criteria. These criteria are usually
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