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INTRODUCTION

In the data-mining field, many learning methods — such
as association rules, Bayesian networks, and induction
rules (Grzymala-Busse & Stefanowski, 2001) — can
handle only discrete attributes. Therefore, before the
machine-learning process, it is necessary to re-encode
each continuous attribute in a discrete attribute consti-
tuted by a set of intervals. For example, the age attribute
can be transformed in two discrete values representing
two intervals: less than 18 (a minor) and 18 or greater.
This process, known as discretization, is an essential
task of the data preprocessing not only because some
learning methods do not handle continuous attributes,
but also for other important reasons. The data trans-
formed in a set of intervals are more cognitively rel-
evant for a human interpretation (Liu, Hussain, Tan, &
Dash, 2002); the computation process goes faster with
a reduced level of data, particularly when some at-
tributes are suppressed from the representation space
of the learning problem if it is impossible to find a
relevant cut (Mittal & Cheong, 2002); the discretization
can provide nonlinear relations — for example, the
infants and the elderly people are more sensitive to
illness. This relation between age and illness is then not
linear — which is why many authors propose to discretize
the data even if the learning method can handle continu-
ous attributes (Frank & Witten, 1999). Lastly,
discretization can harmonize the nature of the data if it
is heterogeneous — for example, in text categorization,
the attributes are a mix of numerical values and occur-
rence terms (Macskassy, Hirsh, Banerjee, & Dayanik,
2001).

An expert realizes the best discretization because he
can adapt the interval cuts to the context of the study and
can then make sense of the transformed attributes. As
mentioned previously, the continuous attribute “age”
can be divided in two categories. Take basketball as an
example; what is interesting about this sport is that it has
many categories: “mini-mite” (under 7), “mite” (7 to 8),
“squirt” (9 to 10), “peewee” (11 to 12), “bantam” (13 to
14), “midget” (15 to 16), “junior” (17 to 20), and
“senior” (over 20). Nevertheless, this approach is not
feasible in the majority of machine-learning problem

cases because there are no experts available, no a priori
knowledge on the domain, or, for a big dataset, the
human cost would be prohibitive. It is then necessary to
be able to have an automated method to discretize the
predictive attributes and find the cut-points that are
better adapted to the learning problem.

Discretization was little studied in statistics — ex-
cept by some rather old articles considering it as a
special case of the one-dimensional clustering (Fisher,
1958) — but from the beginning of the 1990s, the
research expanded very quickly with the development of
supervised methods (Dougherty, Kohavi, & Sahami,
1995; Liu et al., 2002). Lately, the applied discretization
has affected other fields: An efficient discretization can
also improve the performance of discrete methods such
as the association rule construction (Ludl & Widmer,
2000a) or the machine learning of a Bayesian network
(Friedman & Goldsmith, 1996).

In this article, we will present the discretization as a
preliminary condition of the learning process. The pre-
sentation will be limited to the global discretization
methods (Frank & Witten, 1999), because in a local
discretization, the cutting process depends on the par-
ticularities of the model construction — for example,
the discretization in rule induction associated with ge-
netic algorithms (Divina, Keijzer, & Marchiori, 2003)
or lazy discretization associated with naïve Bayes clas-
sifier induction (Yang & Webb, 2002). Moreover, even
if this article presents the different approaches to
discretize the continuous attributes, whatever the learn-
ing method may be used, in the supervised learning
framework, only discretizing the predictive attributes
will be presented. The cutting of the attributes to be
predicted depends a lot on the particular properties of
the problem to treat. The discretization of the class
attribute is not realistic because this pretreatment, if
effectuated, would be the learning process itself.

BACKGROUND

The discretization of a continuous-valued attribute con-
sists of transforming it into a finite number of intervals
and to re-encode, for all instances, each value on this
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attribute by associating it with its corresponding inter-
val. There are many ways to realize this process.

One of these ways consists of realizing a
discretization with a fixed number of intervals. In this
situation, the user must choose the appropriate number
a priori: Too many intervals will be unsuited to the
learning problem, and too few intervals can risk losing
some interesting information. A continuous attribute
can be divided in intervals of equal width (see Figure 1)
or equal frequency (see Figure 2). Other methods exist to
constitute the intervals based on the clustering prin-
ciples, for example, k-means clustering discretization
(Monti & Cooper, 1999).

Nevertheless, for supervised learning, these
discretization methods ignore an important source of
information: the instance labels of the class attribute.
By contrast, the supervised discretization methods
handle the class label repartition to achieve the differ-
ent cuts and find the more appropriate intervals. Fig-
ure 3 shows a situation where it is more efficient to have
only two intervals for the continuous attribute instead of
three: It is not relevant to separate two bordering inter-
vals if they are composed of the same class data. There-
fore, the supervised or unsupervised quality of a
discretization method is an important criterion to take
into consideration.

Another important criterion to qualify a method is
the fact that a discretization either processes on the
different attributes one by one or takes into account the
whole set of attributes for doing an overall cutting. The
second case, called multivariate discretization, is par-
ticularly interesting when some interactions exist be-
tween the different attributes. In Figure 4, a supervised
discretization attempts to find the correct cuts by taking
into account only one attribute independently of the
others. This will fail: It is necessary to represent the
data with the attributes X1 and X2 together to find the
appropriate intervals on each attribute.

MAIN THRUST

The two criteria mentioned in the previous section —
unsupervised/supervised and univariate/multivariate —
will characterize the major discretization method fami-

lies. In the following sections, we use these criteria to
distinguish the particularities of each discretization
method.

Univariate Unsupervised Discretization

The simplest discretization methods make no use of the
instance labels of the class attribute. For example, the
equal width interval binning consists of observing the
values of the dataset to identify the minimum and the
maximum values observed and to divide the continuous
attribute into the number of intervals chosen by the user
(Figure 1). Nevertheless, in this situation, if uncharac-
teristic extreme values exist in the dataset (“outliers”),
the range will be changed, and the intervals will be
misappropriated. To avoid this problem, divide the con-
tinuous attribute into intervals containing the same num-
ber of instances (Figure 2): This method is called the
equal frequency discretization method.

The unsupervised discretization can be grasped as a
problem of sorting and separating intermingled prob-
ability laws (Potzelberger & Felsenstein, 1993). The
existence of an optimum analysis was studied by Teicher
(1963) and Yakowitz and Spragins (1968). Neverthe-
less, these methods are limited in their application in
data mining due to too strong of statistical hypotheses
seldom checked with real data.

Univariate Supervised Discretization

To improve the quality of a discretization in supervised
data-mining methods, it is important to take into ac-
count the instance labels of the class attribute. Figure 3
shows the problem of constituting intervals without the
information of the class attribute. The intervals that are
the better adapted to a discrete machine-learning method
are the pure intervals containing only instances of a
given class. To obtain such intervals, the supervised
discretization methods — such as the state-of-the-art
method  Minimum Description Length Principle Cut
(MDLPC) — are based on statistical or information-theo-
retical criteria and heuristics (Fayyad & Irani, 1993).

In a particular case, even if one supervised method can
give better results than another (Kurgan & Krysztof,
2004), with real data, the improvements of one method

Figure 1. Equal width discretization

Figure 2. Equal frequency discretization
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