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INTRODUCTION

Data compression is storing data such that it requires
less space than usual. Data compression has been effec-
tively used in storing data in a compressed form on
magnetic tapes, disks, and even main memory. In many
cases, updated data cannot be stored in place when it is
not compressible to the same or smaller size. Compression
also reduces the bandwidth requirements in transmitting
(program) code, data, text, images, speech, audio, and
video. The transmission may be from main memory to the
CPU and its caches, from tape and disk into main memory,
or over local, metropolitan, and wide area networks. When
data compression is used, transmission time improves or,
conversely, the required transmission bandwidth is re-
duced. Two excellent texts on this topic are Sayood (2002)
and Witten, Bell, and Moffat (1999).

Huffman encoding is a popular data compression
method. It substitutes the symbols of an alphabet with k
bits per symbol, so that frequent symbols are repre-
sented with fewer than k bits, and less common symbols
with more than k bits. A significant saving in space is
possible when the distribution is highly skewed, for
example, the Zipf distribution, because the average num-
ber of bits to represent symbols is smaller than k bits.
Arithmetic coding is a more sophisticated technique
that represents a string with an appropriate fraction.
Lempel-Ziv coding substitutes a character string by an
index to a dictionary or a previous occurrence and the
string length. Variations of these algorithms, separately
or in combination, are used in many applications.

Compression can be lossy or lossless. Lossy data
compression is utilized in cases where some data loss
can be tolerated, for example, a restored compressed
image may not be discernibly different from the origi-
nal. Lossless data compression, which restores com-
pressed data to its original value, is absolutely neces-
sary in some applications. Quantization is a lossy data
compression method, which represents data more
coarsely than the original signal.

General purpose data compression is applicable to
data warehouses and databases. For example, a variation
of the lossless Lempel-Ziv method has been applied to
DB2 records. This is accomplished by analyzing the
records in a relational table and building dictionaries,

which are then used in compressing the data. Because
relational tables are organized as database pages, each
page on disk (and main memory) will hold compressed
data, so the number of records per page is doubled. Data
is uncompressed on demand, with or without hardware
assistance.

Data reduction operates at a higher level of abstrac-
tion than data compression, although data compression
methods can be used in conjunction with data reduction.
An example is quantizing the data in a matrix, which has
been dimensionally reduced via the SVD method, as I
describe in the following sections. This concludes the
discussion of data compression; the remainder of this
article deals with data reduction.

MAIN THRUST

Recent interest in data reduction resulted in the New
Jersey Data Reduction Report (Barbara, et al., 1997),
which classifies data reduction methods into parametric
and nonparametric. Histograms, clustering, and indexing
structures are examples of nonparametric methods.
Another classification is direct versus transform-based
methods. Singular value decomposition –(SVD) and
discrete wavelet transforms are parametric transform-
based methods. In the following few sections, I briefly
introduce the aforementioned methods.

SVD

SVD is applicable to a two-dimensional M×N matrix X,
where M is the number of objects, and there are N
features per object. For example, M may represent the
number of customers, and the columns represent the
amount they spend on any of the N products. M may be
in the millions, while N is the hundreds or even thou-
sands.

According to SVD we have the decomposition X =
USVt, where U is another M×N matrix, S is a diagonal
N×N matrix of singular values, sn, 1<n<N, and V holds
the eigenvectors of principal components. Alternatively,
the covariance matrix C, the product of the transpose of
X times X divided by M, can be decompoed as: C =VΛVt,
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where Λ is a diagonal matrix of eigenvalues¸ λn = sn
2/ M. We

assume, without a loss in generality, that the eigenvalues
are in nonincreasing order, such that the transformation
of coordinates into the principal components will yield Y
= XV, whose columns are in decreasing order of their
energy or variance. There is a reduction in the rank of the
matrix when some eigenvalues are equal to zero. If we
retain the first p columns of Y, the Normalized Mean
Square Error –(NMSE) is equal to the sum of the eigenval-
ues of discarded columns divided by the trace of the matrix
(sum of the eigenvalues or diagonal elements of C, which
remains invariant). A significant reduction in the number
of columns can be attained at a relatively small NMSE, as
shown in numerous studies (see Korn, Jagadish, &
Faloutsos, 1997).

Higher dimensional data, as in the case of data ware-
houses, for example, (product, customer, date) (dol-
lars) can be reduced to two dimensions by appropriate
transformations, for example, with products as rows and
(customer × date) as columns.

The columns of dataset X may not be globally corre-
late —for example, high-income customers buy expensive
items, and low-income customers buy economy items —
so that the items bought by these two groups of custom-
ers are disjoint. Higher data compression (for a given
NMSE) can be attained by first clustering the data, using
an off-the-shelf clustering method, such as k-means (Dun-
ham, 2003), and then applying SVD to clusters (Castelli,
Thomasian, & Li, 2003). More sophisticated clustering
methods, which generate elliptical clusters, may yield
higher dimensionality reduction. An SVD-friendly clus-
tering method, which generates clusters amenable to
dimensionality reduction, is proposed in Chakrabarti and
Mehrotra (2000).

K-nearest-neighbor (k-NN) queries can be carried
out with respect to a dataset, which has been subjected
to SVD, by first transforming the query point to the
appropriate coordinates by using the principal compo-
nents. In the case of multiple clusters, we first need to
determine the cluster to which the query point belongs.
In the case of the k-means clustering method, the query
point belongs to the cluster with the closest centroid.
After determining the k nearest neighbors in the primary
cluster, I need to determine if other clusters are to be
searched. A cluster is searched if the hypersphere cen-
tered on the query point, with the k nearest neighbors
inside it, intersects with the hypersphere of that cluster.
This step is repeated until no more intersections exist.

Multidimensional scaling – (MS) is another method
for dimensionality reduction (Kruskal & Wish, 1978).
Given the pair-wise distances or dissimilarities among
a set of objects, the goal of MS is to represent them in
k dimensions so that their distances are preserved. A
stress function, which is the sum of squares of the

difference between the distances of points with k di-
mensions and the original distance, is used to represent
the goodness of the fit. The value of k should be selected
to be as small as possible, while stress is maintained at
an appropriately low level. A fast, approximate alterna-
tive is FASTMAP, whose goal is to find a k-dimensional
space that matches the distances of an N×N matrix for N
points (Faloutsos & Lin, 1995).

WAVELETS

According to Fourier’s theorem, a continuous function
can be expressed as the sum of sinusoidal functions. A
discrete signal with n points can be expressed by the n
coefficients of a Discrete Fourier Transform –(DFT).
According to Parseval’s theorem, the energy in the time
and frequency domain are equal (Faloutsos, 1996).

The DFT consists of the sum of sine and cosine
functions. I am interested in transforms, which can
capture a vector with as few coefficients as possible.
The Discrete Cosine Transform –(DCT) achieves better
energy concentration than DFT and also solves the fre-
quency-leak problem that plagues DFT (Agrawal,
Faloutsos, & Swami, 1993).

The Discrete Wavelet Transform –(DWT) is also
related to DFT but achieves better lossy data compres-
sion. The Haar transform is a simple wavelet transform
that operates on a time sequence and computes the sum
and difference of its halves, recursively. DWT can be
applied to signals with multiple dimensions, one dimen-
sion at a time (Press, Teukolsky, Vetterling, & Flannery,
1996). To illustrate how a single dimensional wavelet
transform works, consider an image with four pixels
having the following values: [9,7,3,5] (Stollnitz, Derose,
& Salesin, 1996). We obtain a lower resolution image by
substituting pairs of pixel values with their average:
[8,4]. Information is lost due to down sampling. The
original pixels can be recovered by storing detail coef-
ficients, given as 1=9–8 and –1=3–4, that is, [1,–1].
Another averaging and detailing step yields [6] and [2].
The wavelet transform of the original image is then
[6,2,1,–1]. In fact, for normalization purposes, the last
two coefficients have to be divided by the square root of
2. Wavelet compression is attained by not retaining all
the coefficients.

As far as data compression in data warehousing is
concerned, a k-d DWT can be applied to a k-d data cube
to obtain a compressed approximation by saving a frac-
tion of the strongest coefficients. An approximate com-
putation of multidimensional aggregates for sparse data
using wavelets is reported in Vitter and Wang (1999).
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