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INTRODUCTION

The focus of Online Analytical Processing (OLAP) is to
provide a platform for analyzing data (e.g., sales data) with
multiple dimensions (e.g., product, location, time) and
multiple measures (e.g., total sales or total cost). OLAP
operations then allow viewing of this data from a number
of perspectives. For analysis, the object or data structure
of primary interest in OLAP is a cube.

BACKGROUND

An n-dimensional cube is defined as a group of k-dimen-
sional (k<=n) cuboids arranged by the dimensions of the
data. A cell represents an association of a measure m (e.g.,
total sales) with a member of every dimension (e.g.,
product=“toys”, location=“NJ”, year=“2003”). By defini-
tion, a cell in an n-dimensional cube can have fewer
dimensions than n. The dimensions not present in the cell
are aggregated over all possible members. For example,
you can have a two-dimensional (2-D) cell ,
C1(product=“toys”, year=“2003”). Here, the implicit value
for the dimension location is ‘*’, and the measure m (e.g.,

total sales) is aggregated over all locations. A cuboid is
a group-by of a subset of dimensions, obtained by aggre-
gating all tuples on these dimensions. In an n-dimensional
cube, a cuboid is a base cuboid if it has exactly n dimen-
sions. If the number of dimensions is fewer than n, then
it is an aggregate cuboid. Any of the standard aggregate
functions such as count, total, average, minimum, or
maximum can be used for aggregating. Figure 1 shows an
example of a three-dimensional (3-D) cube, and Figure 2
shows an aggregate 2-D cuboid.

In theory, no special operators or SQL extensions are
required to take a set of records in the database and
generate all the cells for the cube. Rather, the SQL group-
by and union operators can be used in conjunction with
d sorts of the dataset to produce all cuboids. However,
such an approach would be very inefficient, given the
obvious interrelationships between the various group-
bys produced.

MAIN THRUST

I now describe the essence of the major methods for the
computation of OLAP cubes.

Figure 1. A 3-D cube that consists of 1-D, 2-D, and 3-D
cuboids

Figure 2. An example 2-D cuboid on (product, year) for
the 3-D cube in Figure 1 (location='*'); total sales needs
to be aggregated (e.g., SUM)
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Computation of OLAP Cubes


Top-Down Computation

In a seminal paper, Gray, Bosworth, Layman, and Pirahesh
(1996) proposed the data cube operator as a means of
simplifying the process of data cube construction. The
algorithm presented forms the basis of the top-down
approach. In the approach, the aggregation functions are
categorized into three classes:

• Distributive: An aggregate function F is called
distributive if there exists a function g such that the
value of F for an n-dimensional cell can be computed
by applying g to the value of F in an (n + 1)–
dimensional cell. Examples of such functions in-
clude SUM and COUNT. For example, the COUNT()
of an n-dimensional cell can be computed by apply-
ing SUM to the value of COUNT() in an (n+1)–
dimensional cell.

• Algebraic: An aggregate function F is algebraic if
F of an n-dimensional cell can be computed by using
a constant number of aggregates of the (n + 1)–
dimensional cell. An example is the AVERAGE()
function. The AVERAGE() of an n-dimensional cell
can be computed by taking the sum and count of the
(n+1)–dimensional cell and then dividing the SUM
by the COUNT to produce the global average.

• Holistic: An aggregate function F is called holistic
if the value of F for an n-dimensional cell cannot be
computed from a constant number of aggregates of
the (n+1)–dimensional cell. Median and mode are
examples of holistic functions.

The top-down cube computation works with distribu-
tive or algebraic functions. These functions have the
property that more detailed aggregates (i.e., more dimen-
sions) can be used to compute less detailed aggregates.
This property induces a partial-ordering (i.e., a lattice) on
all the group-bys of the cube. A group-by is called a child
of some parent group-by if the parent can be used to

compute the child (and no intermediate group-bys exist
between the parent and child). Figure 3 depicts a sample
lattice where A, B, C, and D are dimensions, nodes repre-
sent group-bys, and the edges show the parent-child
relationship.

The basic idea for top-down cube construction is to
start by computing the base cuboid (group-by for which
no cube dimensions are aggregated). A single pass is
made over the data, a record is examined, and the appro-
priate base cell is incremented. The remaining group-bys
are computed by aggregating over already computed finer
grade group-by. If a group-by can be computed from one
or more possible parent group-bys, then the algorithm
uses the parent smallest in size. For example, for comput-
ing the cube ABCD, the algorithm starts out by computing
the cuboids for ABCD. Then, using ABCD, it computes
the cuboids for ABC, ABD, and BCD. The algorithm then
repeats itself by computing the 2-D cuboids, AB, BC, AD,
and BD. Note that the 2-D–cuboids can be computed from
multiple parents. For example, AB can be computed from
ABC or ABD. The algorithm selects the smaller group-by
(the group-by with the fewest number of cells). An ex-
ample top-down cube computation is shown in Figure 4.

 Variants of this approach optimize on additional costs.
The best-known methods are the PipeSort and PipeHash
(Agarwal, Agrawal, Deshpande, Gupta, Naughton,
Ramakrishnan, et al., 1996). The basic idea of both algo-
rithms is that a minimum spanning tree should be gener-
ated from the original lattice such that the cost of travers-
ing edges will be minimized. The optimizations for the
costs that these algorithms include are as follows:

• Cache-results: This optimization aims at ensuring
that the result of a group-by is cached (in memory)
so other group-bys can use it in the future.

• Amortize-scans: This optimization amortizes the
cost of a disk read by computing the maximum
possible number of group-bys together in memory.

• Share-sorts: For a sort-based algorithm, this aims
at sharing sorting cost across multiple group-bys.
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Figure 3. Cube lattice
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Figure 4. Top-down cube computation
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