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INTRODUCTION

One data mining activity is cluster analysis, of which
there are several types. One type deserving special
attention is clustering that arises due to a mixture of
curves. A mixture distribution is a combination of two
or more distributions. For example, a bimodal distribu-
tion could be a mix with 30% of the values generated
from one unimodal distribution and 70% of the values
generated from a second unimodal distribution. The
special type of mixture we consider here is a mixture of
curves in a two-dimensional scatter plot. Imagine a
collection of hundreds or thousands of scatter plots,
each containing a few hundred points, including back-
ground noise, but also containing from zero to four or
five bands of points, each having a curved shape. In a
recent application (Burr et al., 2001), each curved band
of points was a potential thunderstorm event (see Figure
1), as observed from a distant satellite, and the goal was
to cluster the points into groups associated with thun-
derstorm events. Each curve has its own shape, length,
and location, with varying degrees of curve overlap,
point density, and noise magnitude. The scatter plots of
points from curves having small noise resemble a smooth
curve with very little vertical variation from the curve,
but there can be a wide range in noise magnitude so that
some events have large vertical variation from the cen-
ter of the band. In this context, each curve is a cluster and
the challenge is to use only the observations to estimate
how many curves comprise the mixture, plus their shapes
and locations. To achieve that goal, the human eye could
train a classifier by providing cluster labels to all points
in example scatter plots. Each point either would belong
to a curved region or to a catch-all noise category, and a
specialized cluster analysis would be used to develop an
approach for labeling (clustering) the points generated
according to the same mechanism in future scatter plots.

BACKGROUND

Two key features that distinguish various types of clus-
tering approaches are the assumed mechanism for how
the data is generated and the dimension of the data. The

data-generation mechanism includes deterministic and
stochastic components and often involves determinis-
tic mean shifts between clusters in high dimensions. But
there are other settings for cluster analysis. The particu-
lar one discussed here (see Figure 1) is a mixture of
curves, where any notion of a cluster mean would be
quite different from that in more typical clustering
applications. Furthermore, although finding clusters in
a two-dimensional scatter plot seems less challenging
than in higher-dimensions (the trained human eye is
likely to perform as well as any machine-automated
method, although the eye would be slower), complica-
tions include overlapping clusters; varying noise magni-
tude; varying feature and noise and density; varying
feature shape, locations, and length; and varying types of
noise (scene-wide and event-specific). Any one of these
complications would justify treating the fitting of curve
mixtures as an important special case of cluster analy-
sis. Although as in pattern recognition, the following
methods discussed require training scatter plots with
points labeled according to their cluster memberships,
we regard this as cluster analysis rather than pattern
recognition, because all scatter plots have from zero to
four or five clusters whose shape, length, location, and
extent of overlap with other clusters vary among scatter
plots. The training data can be used both to train cluster-
ing methods and then to judge their quality. Fitting
mixtures of curves is an important special case that has
received relatively little attention to date. Fitting mix-
tures of probability distributions dates to Titterington
et al. (1985), and several model-based clustering
schemes have been developed (Banfield & Raftery,
1993; Bensmail et al., 1997; Dasgupta & Raftery, 1998),
along with associated theory (Leroux, 1992). However,
these models assume that the mixture is a mixture of
probability distributions (often Gaussian, which can be
long and thin, ellipsoidal, or more circular) rather than
curves. More recently, methods for mixtures of curves
have been introduced, including a mixture of principal
curves model (Stanford & Raftery, 2000), a mixture of
regression models (Gaffney & Smyth 2003; Hurn, Justel,
& Robert, 2003; Turner, 2000), and mixtures of local
regression models (i.e., smooth curves obtained using
splines or nonparametric kernel smoothers for example).
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MAIN THRUST

Several methods have been proposed for fitting mix-
tures of curves. In method 1 (Burr et al., 2001), first use
density estimation to reject the background noise points
such as those labeled as 2 in Figure 1a. For example,
each point in the scatter plot has a distance to its kth
nearest neighbor, which can be used as a local density
estimate (Silverman, 1986) to reject noise points. Next,
use a distance measure that favors long, thin clusters
(e.g., let the distance between clusters be the minimum
distance between any a point in the first cluster and a
point in the second cluster), together with standard
hierarchical clustering to identify at least the central
portion of each cluster. Alternatively, model-based clus-
tering favoring long, thin Gaussian shapes (Banfield &
Raftery, 1993) or the fitting straight lines method in
Murtagh and Raftery (1984) or Campbell et al. (1997)
are effective for finding the central portion of each
cluster. A curve fitted to this central portion can be
extrapolated and then used to accept other points as
members of the cluster. Because hierarchical cluster-
ing cannot accommodate overlapping clusters, this
method assumes that the central portions of each cluster
are non-overlapping. Points away from the central por-
tion from one cluster that lie close to the curve fitted to
the central portion of the cluster can overlap with points

from another cluster. The noise points are identified
initially as those having low local density (away from
the central portion of any cluster) but, during the ex-
trapolation, can be judged to be a cluster member, if they
lie near the extrapolated curve. To increase robustness,
method 1 can be applied twice, each time using slightly
different inputs (such as the decision threshold for the
initial noise rejection and the criteria for accepting
points into a cluster that are close to the extrapolated
region of the cluster’s curve). Then, only clusters that
are identified both times are accepted.

Method 2 uses the minimized, integrated squared
error (ISE, or L2 distance) (Scott, 2002; Scott &
Szewczyk, 2002) and appears to be a good approach for
fitting mixture models, including mixtures of regres-
sion models, as is our focus here. Qualitatively, the
minimum L2 distance method tries to find the largest
portion of the data that matches the model. In our
context, at each stage, the model is all the points belong-
ing to a single curve plus everything else. Therefore, we
first seek cluster 1 having the most points, regard the
remaining points as noise, remove the cluster, then
repeat the procedure in search of feature 2, and so on,
until a stop criterion is reached. It also should be pos-
sible to estimate the number of components in the
mixture in the first evaluation of the data, but that
approach has not yet been attempted. Scott (2002) has
shown that in the parametric setting with model f(x|qθ), we

estimate θ  using 
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the correct parametric family is used; the concept can be
extended to include the case in which the assumed para-
metric form is incorrect in order to achieve robustness.

Method 3 (principal curve clustering with noise) was
developed by Stanford and Raftery (2000) to locate
principal curves in noisy spatial point process data.
Principal curves were introduced by Hastie and Stuetzle
(1989). A principal curve is a smooth curvilinear sum-
mary of p-dimensional data. It is a nonlinear generaliza-
tion of the first principal component line that uses a
local averaging method. Stanford and Raftery (2000)
developed an algorithm that first uses hierarchical prin-
cipal curve clustering (HPCC, which is a hierarchical
and agglomerative clustering method) and next uses
iterative relocation (reassign points to new clusters)
based on the classification estimation-maximization
(CEM) algorithm. A probability model included the
principal curve probability model for the feature clus-
ters and a homogeneous Poisson process model for the
noise cluster. More specifically, let X denote the set of

Figure 1. Four mixture examples containing (a) one,
(b) one, (c) two, and (d) zero thunderstorm events plus
background noise. The label “1” is for the first
thunderstorm in the scene, “2” for the second, and so
forth., and the highest integer label is reserved for the
catch-all noise class. Therefore, in (d), because the
highest integer is 1, there is no thunderstorm present
(the mixture is all noise).
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