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INTRODUCTION

Although the use of statistically probable properties is
very common in the area of medicine, it is not so in
software engineering. The use of such properties may
open a new avenue for the automated recovery of de-
signs from source codes. In fact, the recovery of de-
signs can also be called program mining, which in turn
can be viewed as an extension of data mining to the
mining in program source codes.

BACKGROUND

Today, most of the tasks in software verification, test-
ing, and re-engineering remain manually intensive
(Beizer, 1990), time-consuming, and error prone. As
many of these tasks require the recognition of designs
from program source codes, automation of the recogni-
tion is an important means to improve these tasks.
However, many designs are difficult (if not impossible)
to recognize automatically from program source codes
through theoretical knowledge alone (Biggerstaff,
Mitbander, & Webster, 1994; Kozaczynski, Ning, &
Engberts, 1992). Most of the approaches proposed for
the recognition of designs from program source codes
are based on plausible inference (Biggerstaff et al.,
1994; Ferrante,  Ottenstein,  & Warren, 1987;
Kozaczynski et al., 1992). That is, they are actually
based on empirical-based knowledge (Kitchenham,
Pfleeger, Pickard, Jones, Hoaglin, Emam, & Rosenberg,
2002). However, to the best of our knowledge, the
building of empirical-based knowledge to supplement
theoretical knowledge for the recognition of designs
from program source code has not been formally dis-
cussed in the literature.

This paper introduces an approach for the building
and applying of empirical-based knowledge to supple-
ment theoretical knowledge for the recognition of de-
signs from program source codes. The first section
introduces the proposed approach. The second section

discusses the application of the proposed approach for the
recovery of functional dependencies enforced in database
transactions. The final section shows our conclusion.

MAIN THRUST

The Approach

Many types of designs are usually implemented through
a few methods. The use of a method has a direct influ-
ence on the programs that implement the designs. As a
result, these programs may have some certain charac-
teristics. And we may be able to recognize the designs or
their properties through recognizing these characteris-
tics, from either a theoretical or empirical basis or the
combination of the two.

An overview of the approach for building empirical-
based knowledge for design recovery through program
analysis is shown in Figure 1. In the figure, arcs show
interactions between tasks. In the approach, we first
research the designs or their properties, which can be
recognized from some characteristics in the programs
that implement them through automated program analy-
sis. This task requires domain knowledge or experience.
The reason for using design properties is that some
designs could be too complex to recognize directly. In
the latter case, we first recognize the properties, then
use them to infer the designs. We aim for characteris-
tics that are not only sufficient but also necessary for
recognizing designs or their properties. If the charac-
teristics are sufficient but not necessary, even if we
cannot infer the target designs, they do not imply the
nonexistence of the designs. If we cannot find charac-
teristics from which a design can be formally proved,
then we will look for characteristics that have signifi-
cant statistical evidence. These empirical-based char-
acteristics are taken as hypotheses. With the use of
hypotheses and theoretical knowledge, a theory is built
for the inference of designs.
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Secondly, we design experiments to validate the hy-

potheses. Some software tools should be developed to
automate or semiautomate the characterization of the
properties stated in the hypotheses. We may merge
multiple hypotheses together as a single hypothesis for
the convenience of hypothesis testing. An experiment is
designed to conduct a binomial test (Gravetter & Wallnau,
2000) for each resulting hypothesis. If altogether we
have k hypotheses denoted by H1,…., Hk

 and we would
like the probability of validity of the proposed design
recovery to be more than or equal to q, then we must
choose p1,…., pk such that p1,…., pk  ≥ q. For each
hypothesis Hj (1 ≤ j ≤ k), the null and alternate hypoth-
esis of the binomial test states that less than pj*100%
and equal or more than pj*100%, respectively, of the
cases that Hj holds. That is:

Hj
0 (null hypothesis): probability that Hj holds < p

Hj
1 (alternate hypothesis): probability that Hj holds ≥

p

For the use of normal approximation for the bino-
mial test, both npj and n(1-pj) must be greater than or
equal to 10. As such, the sample size n must be greater
than or equal to max (10/pj, 10/(1-pj)). The experiment
is designed to draw a random sample of size n to test the
hypothesis. For each case in the sample, the validity of
the hypothesis is examined. The total number of cases,
X, that the hypothesis holds is recorded and substituted
in the following binomial test statistics:

             z = )/)1((

/

njpjp
jpnX

−

−

Let α be the Type I error probability. If z is greater
than zα, we reject the null hypothesis; otherwise, we
accept the null hypothesis, where the probability of
standard normal model for z ≥ zα is α.

Thirdly, we develop the required software tools and
conduct the experiments to test each hypothesis ac-
cording to the design drawn in the previous step.

Fourthly, if all the hypotheses are accepted, algo-
rithms will be developed for the use of the theory to
automatically recognize the designs from program source
codes. A software tool will also be developed to imple-
ment the algorithms. Some experiments should also be
conducted to validate the effectiveness of the method.

Applying the Proposed Approach for
the Recovery of Functional
Dependencies

Let R be a record type and X be a sequence of attributes
of R. For any record r in R, its sequence of values of the
attributes in X is referred as the X-value of r. Let R be a
record type, and X and Y be sequences of attributes of R.
We say that the functional dependency (FD), X → Y of R,
holds at time t, if at time t, for any two R records r and s,
the X-values of r and s are identical, then the Y-values of
r and s are also identical. We say that the functional
dependency holds in a database if, except in the midst of
a transaction execution (which updates some record types
involved in the dependency), the dependency always
holds (Ullman, 1982).

Many of the world’s database applications have been
built on old generation DBMSs (database management
systems). Due to the nature of system development, many

Figure 1. An overview of the proposed design recovery
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