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INTRODUCTION

Most data mining and modeling techniques have been
developed for data represented as a single table, where
every row is a feature vector that captures the character-
istics of an observation. However, data in most domains
are not of this form and consist of multiple tables with
several types of entities. Such relational data are ubiq-
uitous; both because of the large number of multi-table
relational databases kept by businesses and government
organizations, and because of the natural, linked nature
of people, organizations, computers, and etc. Relational
data pose new challenges for modeling and data mining,
including the exploration of related entities and the aggre-
gation of information from multi-sets (“bags”) of related
entities.

BACKGROUND

Relational learning differs from traditional feature-
vector learning both in the complexity of the data repre-
sentation and in the complexity of the models. The
relational nature of a domain manifests itself in two
ways: (1) entities are not limited to a single type, and (2)
entities are related to other entities. Relational learning
allows the incorporation of knowledge from entities in
multiple tables, including relationships between ob-
jects of varying cardinality. Thus, in order to succeed,
relational learners have to be able to identify related
objects and to aggregate information from bags of re-
lated objects into a final prediction.

Traditionally, the analysis of relational data has in-
volved the manual construction by a human expert of
attributes (e.g., the number of purchases of a customer
during the last three months) that together will form a
feature vector. Automated analysis of relational data is
becoming increasingly important as the number and
complexity of databases increases. Early research on
automated relational learning was dominated by Induc-
tive Logic Programming (Muggleton, 1992), where the
classification model is a set of first-order-logic clauses

and the information aggregation is based on existential
unification. More recent relational learning approaches
include distance-based methods (Kirsten et al., 2001),
propositionalization (Kramer et al., 2001; Knobbe et
al., 2001; Krogel et al., 2003), and upgrades of proposi-
tional learners such as Naïve Bayes (Neville et al.,
2003), Logistic Regression (Popescul et al., 2002),
Decision Trees (Jensen & Neville, 2002) and Bayesian
Networks (Koller & Pfeffer, 1998). Similar to manual
feature construction, both upgrades and
propositionalization use Boolean conditions and com-
mon aggregates like min, max, or sum to transform
either explicitly (propositionalization) or implicitly
(upgrades) the original relational domain into a tradi-
tional feature-vector representation.

Recent work by Knobbe et al. (2001) and Wrobel &
Krogel (2001) recognizes the essential role of aggrega-
tion in all relational modeling and focuses specifically
on the effect of aggregation choices and parameters.
Wrobel & Krogel (2003) present one of the few empiri-
cal comparisons of aggregation in propositionalization
approaches (however with inconclusive results). Perlich
& Provost (2003) show that the choice of aggregation
operator can have a much stronger impact on the result-
ant model’s generalization performance than the choice
of the model induction method (decision trees or logis-
tic regression, in their study).

MAIN THRUST

For illustration, imagine a direct marketing task where
the objective is to identify customers who would re-
spond to a special offer. Available are demographic
information and all previous purchase transactions, which
include PRODUCT, TYPE and PRICE. In order to take
advantage of these transactions, information has to be
aggregated. The choice of the aggregation operator is
crucial, since aggregation invariably involves loss of
(potentially discriminative) information.

Typical aggregation operators like min, max and sum
can only be applied to sets of numeric values, not to
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objects (an exception being count). It is therefore neces-
sary to assume class-conditional independence and ag-
gregate the attributes independently, which limits the
expressive power of the model. Perlich & Provost (2003)
discuss in detail the implications of various assump-
tions and aggregation choices on the expressive power
of resulting classification models. For example, cus-
tomers who buy mostly expensive books cannot be
identified if price and type are aggregated separately. In
contrast, ILP methods do not assume independence and
can express an expensive book (TYPE=“BOOK” and
PRICE>20); however aggregation through existential
unification can only capture whether a customer bought
at least one expensive book, not whether he has bought
primarily expensive books. Only two systems, POLKA
(Knobbe et al., 2001) and REGLAGGS (Wrobel &
Krogel, 2001) combine Boolean conditions and nu-
meric aggregates to increase the expressive power of
the model.

Another challenge is posed by categorical attributes
with many possible values, such as ISBN numbers of
books. Categorical attributes are commonly aggregated
using mode (the most common value) or the count for
all values if the number of different values is small.
These approaches would be ineffective for ISBN: it has
many possible values and the mode is not meaningful
since customers usually buy only one copy of each
book. Many relational domains include categorical at-
tributes of this type. One common class of such do-
mains involves networked data, where most of the infor-
mation is captured by the relationships between objects,
possibly without any further attributes. The identity of
an entity (e.g., Bill Gates) in social, scientific, and
economic networks may play a much more important
role than any of its attributes (e.g., age or gender).
Identifiers such as name, ISBN, or SSN are categorical
attributes with excessively many possible values that
cannot be accounted for by either mode or count.

Perlich and Provost (2003) present a new multi-step
aggregation methodology based on class-conditional
distributions that shows promising performance on net-

worked data with identifier attributes. As Knobbe et al.
(1999) point out, traditional aggregation operators like
min, max, and count are based on histograms. A histo-
gram itself is a crude approximation of the underlying
distribution. Rather than estimating one distribution for
every bag of attributes, as done by traditional aggrega-
tion operators, this new aggregation approach estimates
in a first step only one distribution for each class, by
combining all bags of objects for the same class. The
combination of bags of related objects results in much
better estimates of the distribution, since it uses many
more observations. The number of parameters differs
across distributions: for a normal distribution only two
parameters are required, mean and variance, whereas
distributions of categorical attributes have as many
parameters as possible attribute values. In a second step,
the bags of attributes of related objects are aggregated
through vector distances (e.g., Euclidean, Cosine, Like-
lihood) between a normalized vector-representation of
the bag and the two class-conditional distributions.

Imagine the following example of a document clas-
sification domain with two tables (Document and Au-
thor) shown in Figure 1.

The first aggregation step estimates the class-
conditional distributions DClass n of authors from the
Author table. Under the alphabetical ordering of
position:value pairs, 1:A, 2:B, and 3:C, the value for
DClass n at position k is defined as:

Number of occurrences of author k in the set of authors related to documents of class n DClass n[k] = Number of authors related to documents of class n 
 

The resulting estimates of the class-conditional dis-
tributions for our example are given by:

DClass 0 = [0.5  0  0.5] and DClass 1 = [0.4  0.4  0.2]

The second aggregation step is the representation
of every document as a vector:

Number of occurrences of author k related to the document Pn DPn[k]     = Number of authors related to document Pn 
 

The vector-representation for the above examples
are DP1 = [1 0 0], DP2 = [0.5 0.5 0], DP3 = [0.33 0.33
0.33], and DP4 = [0 0 1].

The third aggregation step calculates vector dis-
tances (e.g., cosine) between the class-conditional distri-
bution and the documents DP1,...,DP4. The new Document
table with the additional cosine features is shown in
Figure 2. In this simple example, the distance from DClass

1 separates the examples perfectly; the distance from DClass

0 does not.

Figure 1. Example domain with two tables that are
linked through Paper ID

Document Table  Author Table 
Paper ID Class  Paper ID Author Name 
P1 0  P1 A 
P2 1  P2 B 
P3 1  P2 A 
P4 0  P3 B 
   P3 A 
   P3 C 
   P4 C 
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