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INTRODUCTION

Many different synthetic neuron implementations 
exist, that include a variety of traits associated with 
biological neurons and our understanding of them. An 
important motivation behind the studies, modelling 
and implementations of different synthetic neurons, 
is that nature has provided the most efficient ways of 
doing important types of computations, that we are 
trying to mimick.

Whether it is Artificial Neural Networks (ANNs) 
or other mixed signal systems, technology has always 
evolved in the direction of lower energy per unit 
computation ( Mead, 1990 ). Simple Neuron models 
as threshold elements, or perceptrons, are promising 
candidates for implementing future signal processing 
systems, including CMOS and SET ( Schmid & Leb-
lebici, 2003 ), ( Beiu & Ibrahim, 2007 ).

In this article a small number of published sub-
threshold, ultra low power, perceptrons / threshold 
elements are compared regarding power consumption, 
operational speed and defect tolerance. The “mir-
rored” gate operating in subthreshold and combined 
with redundancy, might be an interesting candidate 
for implementing artificial neural networks as well as 
other mixed-signal processing circuitry.

Previously unpublished results demonstrate the mir-
rored gate producing appropriate binary outputs at 180 
mV supply voltage, even when a transistor was cut off 
the supply voltage, for a redundancy factor of 2, using 
shorted outputs, as in ( Aunet & Hartmann, 2003 ). 

BACKGROUND

CMOS  has been the dominant technology for imple-
menting signal processing systems for decades, and 
will probably live alongside other nanotechnologies 
for a long time ( ITRS, 2005 ). Due to needs for low 
power operation for about any future signal processing 
technology and that CMOS and similar technologies 
probably will be mainstream for the foreseeable future, 

the scope of this paper is limited to simple CMOS, ultra 
low power circuit topologies. Subthreshold circuits ( 
Swansson & Meindl, 1972 ), using a supply voltage 
below the inherent threshold voltage of the transistors, 
consume less power than other low power circuits ( 
Soeleman, Roy & Paul, 2001 ). Therefore we look at 
subthreshold neuron (“perceptron”) implementations 
in this paper, and concentrate on different metrics in-
cluding circuit complexity, operational speed, power 
consumption and defect tolerance.

Reducing the power supply voltage through using 
ever more modern CMOS technologies and subthresh-
old operation reduces the number of inputs one could 
use for the threshold elements, depicted in Figure 1 ( 
Aunet, 2002 ). Also, since only 2 inputs is optimal to 
implement any arbitrary neural network ( Beiu & Ma-
karuk, 1998 ) we have restricted the treatment to basic 
building blocks having a maximum fan-in of 3.

The first simple mathematical model of the bio-
logical neurons, published by McCulloch and Pitts in 
1943, calculates the sign of the weigthed sum of inputs. 
Sometimes such circuits are called threshold logic gates 
or threshold elements, illustrated in Figure 1. Such per-
ceptrons may be used to implement Neural Networks 
as well as digital signal processing. For a review on a 
wide range of VLSI implementations the reader might 
confer ( Beiu, Avedillo & Quintana, 2003 ).

Figure 1. The binary  output, Y, depends on if the 
weighted sum of inputs X1, X2,…,Xn exceeds a certain 
Threshold, T.
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ULTRA LOW POWER NEURONS, 
SPEED AND RELIABILITy

The main focus is on different subthreshold ultra low 
power perceptrons and how they compare regarding 
power consumption, operational speed and reliabil-
ity.

MOS Transistors in Subthreshold 

For an NMOS transistor in subthreshold we have 
(Andreou, Boahen, Pouliquen, Pavasovic, Jenkins & 
Strohbehn, 1991):

Ids,n = I0 e
(κVgs/Vt) e((1-κ)Vbs/Vt)(1-e(-Vds/Vt)+Vds/V0)

Ids,n expresses the current from drain to source. 
I0 is the zero-bias current where the pre-exponential 
constants have been absorbed. This includes the chan-
nel width (“W”) and the length (“L”) of the MOSFET  
structure. Vgs is the gate-to-source potential, Vds the 
drain-to-source potential and Vbs the substrate-to-
source potential.

V0 is the Early voltage, which is proportional to 
the channel length. κ gives the effectiveness for which 
the gate potential is  controlling the channel current. 
It is often approximately 0.7-0.75 (Andreou, Boahen, 
Pouliquen, Pavasovic, Jenkins & Strohbehn, 1991). 
The thermal voltage is expressed as Vt=kT/q. Vt = 25.8 
mV at room temperature. 

A similar equation apply to PMOS transistors, but 
with opposite polarities. Exponential relationships 

between voltages between several nodes and the cur-
rent level mean that subthreshold circuits also have 
operational speed and power consumption that are 
extremely dependent on the supply voltage, Vdd. For 
example when operated at 10 kHz a subthreshold cir-
cuit used four orders of magnitude less than a regular 
strong inversion circuit implementing the same function 
( Soeleman, Roy & Paul, 2001 ).

Low Fan-In Subthreshold Threshold 
Element (“Neuron”) Circuit 
Implementations

Recently published circuits are shown in Figure 2. The 
“mirrored gate” is a static CMOS solution ( Beiu, Au-
net, Nyathi, Rydberg III & Djupdal, 2005 ), based on ( 
Hampel D., Prost K. J. & Scheinberg N. R., 1974 ). The 
floating-gate solution P3N3 ( Aunet, 2002 ) might not 
go well along with future standard CMOS due to gate 
leakage, while the  “ijcnn” (Aunet, Oelmann, Abdalla 
& Berg, 2004) and “stacked” ( Aunet, Berg & Beiu, 
2005 ) gates are CMOS.

Metrics Regarding Power Consumption 
and Maximum Operational Speed

Recently published results are shown in Figure 3 ( 
Granhaug & Aunet, 2006 ). The “mirrored”, “ijcnn” 
and “stacked” gates were used for implementing 1-bit 
addition, Full Adders, in a 90 nm CMOS technology, 
and compared to a standard CMOS implementation 
(upper right corner in Figure 4).

Figure 2. Experimental setup for statistical simulation of 1-bit adder. From left to right they are called “mir-
rored”, “P3N3”, “IJCNN” and “Stacked” threshold elements.
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