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INTRODUCTION 

Symbolic search solves state space problems consist-
ing of an initial state, a set of goal states, and a set of 
actions using a succinct representation for state sets. 
The approach lessens the costs associated with the 
exponential memory requirements for the state sets 
involved as problem sizes get bigger. 

Symbolic search has been associated with the term 
planning via model checking (Giunchiglia and Traverso 
1999). While initially applied to model check hardware 
verification problems (McMillan 1993), symbolic 
search features many modern action planning systems 
(Ghallab et al. 2000). 

Symbolic search algorithms explore the underly-
ing problem graph by using functional expressions to 
represent sets of states and actions. Compared with the 
space requirements induced by standard explicit-state 
search algorithms, symbolic representations addition-
ally save space by sharing parts of the state vector. 
Algorithm designs change, as not all search algorithms 
adapt to the exploration of state sets. 

BACKGROUND

Binary decision diagrams or BDDs are one option for 
a space-efficient representation for state sets. 

A BDD (Bryant 1992; see Figure 1), is a data struc-
ture to manipulate Boolean functions efficiently. BDDs 

are finite state machines over the alphabet {0,1} with a 
1-sink that operates as an accepting state. Each internal 
node is labelled with the variable (index) for selecting 
the outgoing transition (either 1 or 0, see figure) for a 
given variable assignment. For evaluating a BDD, a 
path is traced from the root to the sinks (all paths obey 
the same variable ordering). What distinguishes BDDs 
from decision trees is the use of reduction rules, detect-
ing unnecessary variable tests and repeating subgraphs. 
This leads to a unique representation, polynomial in 
the number of input variables for many interesting 
functions. The reduced and ordered BDD representa-
tion is unique; a clear benefit to the satisfiability test 
for Boolean formulas, which by the virtue of Cook’s 
Theorem (1971) is an NP-hard problem 

In symbolic search, BDDs accept the state vector 
representation. According functions are satisfied, if the 
state vector for the input assignment is a member of 
the represented set. The characteristic function can be 
identified with the state set it represents. 

The transition relation Trans represents the actions 
(see Figure 2). It refers to current state variables x 
and next state variables x’ and is satisfied, if there is 
an action that transforms a state vector into one of its 
successors. The transition relation for the entire prob-
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lem decomposes in the disjunction of the transition 
relations for singleton actions. The order of variables 
in the state vector is crucially influencing the size of 
the BDD. Unfortunately, the problem of finding the 
ordering that minimizes the BDD size is NP-hard 
(Wegener 2000).  The interleaved representation for the 
Trans(x,x’) that alternates between x and x’ variables 
often leads to small BDDs.

The image of a state set States wrt. the transition rela-
tion Trans is computed as Image(x’) :=  ∃x (Trans(x,x’) 
∧ States(x)), where x and x’ are vectors of Boolean 
state variables. The result of this image operation is 
a characteristic function of all states reachable from 
States in one step. In order to repeat the process, x with 
x’ have to be substituted for the next iteration by com-
puting the relational product States(x) := ∃x’ ((x=x’) 
∧ Image(x’)). In an interleaved variable ordering with 
alternating indices for x and x’, this operation reduces 
to a mere textual replacement of node labels.

. 
SyMBOLIC SEARCH ALGORITHMS
 
State space problems numbers of finite domain can 
be encoded via atomic propositions. A binary encod-
ing is more efficient than a unary one such that most 
BDD libraries include finite domain variable support. 
For basic calculus, relations are pre-computed. For 
example, the binary relation Inc(a,b)  for a+1=b is 
the disjunction of all possible value assignments of a 
to j and all possible value assignments of b to j+1 for 
all j counted from 1 to the domain size minus 1. For 
constructing the ternary relation Add(a,b,c), denoting 
a+b=c, the enumeration of all possible assignments 
for a, b and c is less efficient than computing the term 
Add(a,b,c) := (b=0 ∧ a=c) ∨ ∃b',c' (Inc(b',b) ∧ Inc(c',c) 
∧ Add(a,b',c')) recursively. Starting with the first clause 
the second clause is applied until convergence. 

 
Symbolic Breadth-First Search

In iteration i of the symbolic variant of breadth-first-
search the set of states States[i] reachable from the 
initial state s in i steps is computed. The search is 
initialized with States[0] set to the initial state set. In 
order to terminate the search the algorithm checks, 
whether or not a state is represented in the intersection 
of the set States[i] with the set of goal states. Since 
States[0],…,States[i-1] have been computed without 

success, given a non-empty intersection, i is the optimal 
solution length. To avoid an infinite search behaviour 
in case of the absence of a solution, Reach = States[0] 
∨…∨ States[i-1] is omitted from States[i] by setting 
States[i] := States[i] ∧¬Reach before updating Reach 
:= Reach ∨ S[i]. For some problem classes (like un-
directed or acyclic graphs) the duplicate elimination 
scope {0,…,i-1} can be reduced to a limited number 
of breadth-first search levels.

By keeping the intermediate BDDs contained in the 
memory, a legal sequence of states linking the initial 
state to any goal state g in States[i] ∩ G is a successful 
solution. The state on an optimal path to a goal g in 
layer i must be located in the second last breadth-first 
search layer i-1. All states that are contained in the 
intersection of the predecessors of the goal g are and 
States[i-1] are reachable in an optimal number of steps 
and reach the goal in one step. Any of these states can 
be chosen to continue solution reconstruction. Eventu-
ally the initial state is found. If layers have been elimi-
nated to recover main memory, divide-and-conquer 
solution reconstruction methods are required (Jensen 
et al. 2006). Variants of symbolic breadth-first search 
compute cost-optimal solutions subject to general cost 
functions (Edelkamp 2006). 

Backward breadth-first search exploits the relational 
representation for the actions to compute the preimage 
according to the formula Preimage(x) := ∃x’ (States(x’) 
∧ Trans(x,x’)). Consequently, the search starts with the 
goal state set and iterates until it hits the start state. 
Bidirectional symbolic breadth-first search executes 
concurrent iterations of forward and backward breadth-
first search until the two search frontiers meet.

Symbolic Dijkstra’s Single Source 
Shortest Paths Algorithm

Action costs are a natural search concept. In many ap-
plications, costs can only be bounded integers. Examples 
for such discrete cost actions are macros as exploited 
in the macro-problem solver by Korf (1985). 

Let the weighted transition relation Trans(c,x,x’) 
evaluate to 1, if the step from x to x’ has cost c∈{1,…,C}, 
encoded in binary.  The symbolic version of Dijkstra's 
single-source shortest paths algorithm (1959) then 
works as follows. The priority relation Queue(f,x) is 
initialized with the representation of the start state and 
f-value 0.  Until a goal state is reached, in each itera-
tion, the algorithms determines the minimum f-value 
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