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INTRODUCTION

An Artificial Neural Network (ANN) is a computa-
tional structure inspired by the study of biological 
neural processing. Although neurons are considered 
as very simple computation units, inside the nervous 
system, an incredible amount of widely inter-connected 
neurons can process huge amounts of data working in 
a parallel fashion. There are many different types of 
ANNs, from relatively simple to very complex, just 
as there are many theories on how biological neural 
processing works. However, execution of ANNs is 
always a heavy computational task. Important kinds 
of ANNs are those devoted to pattern recognition such 
as Multi-Layer Perceptron (MLP), Self-Organizing 
Maps (SOM) or Adaptive Resonance Theory (ART) 
classifiers (Haykin, 2007). 

Traditional implementations of ANNs used by 
most of scientists have been developed in high level 
programming languages, so that they could be executed 
on common Personal Computers (PCs). The main 
drawback of these implementations is that though 
neural networks are intrinsically parallel systems, 
simulations are executed on a Central Processing 
Unit (CPU), a processor designed for the execution 
of sequential programs on a Single Instruction Single 
Data (SISD) basis. As a result, these heavy programs 
can take hours or even days to process large input data. 
For applications that require real-time processing, it 

is possible to develop small ad-hoc neural networks 
on specific hardware like Field Programmable Gate 
Arrays (FPGAs). However, FPGA-based realization 
of ANNs is somewhat expensive and involves extra 
design overheads (Zhu & Sutton, 2003). 

Using dedicated hardware to do machine learning 
was typically expensive; results could not be shared 
with other researchers and hardware became obsolete 
within a few years. This situation has changed recently 
with the popularization of Graphics Processing Units 
(GPUs) as low-cost and high-level programmable 
hardware platforms. GPUs are being increasingly 
used for speeding up computations in many research 
fields following a Stream Processing Model (Owens, 
Luebke, Govindaraju, Harris, Krüger, Lefohn & Pur-
cell, 2007). 

This article presents a GPU-based parallel imple-
mentation of a Fuzzy ART ANN, which can be used 
both for training and testing processes. Fuzzy ART is 
an unsupervised neural classifier capable of incremental 
learning, widely used in a universe of applications as 
medical sciences, economics and finance, engineering 
and computer science. CPU-based implementations 
of Fuzzy ART lack efficiency and cannot be used for 
testing purposes in real-time applications. The GPU 
implementation of Fuzzy ART presented in this article 
speeds up computations more than 30 times with respect 
to a CPU-based C/C++ development when executed 
on an NVIDIA 7800 GT GPU. 
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Biological neural networks are able to learn and adapt 
its structure based on the external or internal information 
that flows through the network. Most types of ANNs 
present the problem of catastrophic forgetting. Once 
the network has been trained, if we want it to learn 
from new inputs, it is necessary to repeat the whole 
training process from the beginning. Otherwise, the 
ANN would forget previously acquired knowledge. S. 
Grossberg developed the Adaptive Resonance Theory 
(ART) to address this problem (Grossberg, 1987). Fuzzy 
ART is an extension of the original ART 1 system that 
incorporates computations from fuzzy set theory into 
the ART network, and thus making it possible to learn 
and recognize both analog and binary input patterns 
(Carpenter, Grossberg & Rosen, 1991). 

GPUs are being considered in many fields of 
computation and some researchers have made efforts 
for integrating different kinds of ANNs on the GPU. 
Most research has been done for implementing Multi-
Layer Perceptron (MLP) taking advantage of the GPU 
performance in matrix-matrix products (Rolfes, 2004) 
(Oh & Jung 2004) (Steinkraus, Simard & Buck 2005). 
Other researchers have used the GPU for Self-Organiz-
ing Maps (SOM) with great results (Luo, Liu & Wu, 
2005) (Campbell, Berglund & Streit, 2005). Bernhard 
et al. achieved a speed increase of between 5 and 20 
times simulating large networks of Spiking Neurons 
on the GPU (Bernhard & Keriven, 2006). Finally, 
Martínez-Zarzuela et al. developed a generic Fuzzy 
ART ANN on the GPU achieving a speed up higher 
than 30 over a CPU (Martínez-Zarzuela, Díaz, Díez 
& Antón, 2007).

Commodity graphics cards provide a tremendous 
computational horsepower. NVIDIA’s GeForce 7800 
GTX GPU is able to sustain 165 GFLOPS against the 
25.6 GFLOPS theoretical peak for the SSE units of 
a dual-core 3.7 GHz Intel Pentium Extreme (Owens, 
Luebke, Govindaraju, Harris, Krüger, Lefohn & Pur-
cell, 2007). Newest generation of graphics cards, like 
NVIDIA Geforce 8800 Ultra, or AMD (ATI) Radeon 
HD 2900 XT, can give a peak performance higher than 
500 Gflops and 100 GB/s peak memory bandwidth. 
Graphics cards manufacturers have recently discovered 
the field of high performance computing as to be a target 
market for their products and are providing specific 
hardware and software to couple with enterprises and 
researchers heavy computational requirements. 

FUZZy ART NEURAL NETWORK 
STREAM PROCESSING

This article describes a parallel implementation of a 
Fuzzy ART ANN using a stream processing model. In 
this uniform parallel processing paradigm a series of 
computations, defined by one function or kernel, are 
made over an ordered set of data or stream on a Single 
Instruction Multiple Data (SIMD) basis. The main re-
striction of the model is also one of the reasons it can 
provide large increases in performance and a simplified 
programming model: operations on each stream element 
are independent, allowing the execution of the kernel 
on different hardware processing units simultaneously, 
and avoiding stalls that could occur because of inter-
units data sharing.

GPUs used to have two types of programmable 
processors, namely vertex and fragment processors. 
Both kinds of processors were devised to operate on 
four component vectors, as the basic primitives of 3D 
computer graphics are 3D vertices in projected space 
(x, y, z, w) and four component colors (red, green, 
blue, alpha). Both vertex and fragment units could be 
used to execute a kernel over a stream of data (Stream 
Processing) and are programmed using shaders that can 
be written using high level languages as Cg (Randima 
& Kilgard, 2003), GLSL or HLSL. Latest generation 
of GPUs, like nVIDIA GeForce 8800 GTX, do not 
include fragment of vertex processors, but unified 
Stream Processors (SPs): generalized floating-point 
scalar processors capable of operating on vertices, 
pixels, or any manner of data. These new GPUs can 
be programmed using CUDA (Compute Unified De-
vice Architecture) Toolkit from nVIDIA. CUDA is 
a promising new software development solution for 
programming GPUs, simplifying software development 
by using the standard C language. Before CUDA was 
launched programming GPUs for General Purpose 
computation (GPGPU) involved translating algorithms 
into graphics terms (Harris, 2005). Other companies like 
Rapidmind are developing easy-to-program APIs that 
use just-in-time (JIT) compilers for translating source 
code into a format that will work on several system’s 
hardware (GPU, Cell or an x86 CPU). Arrays of data 
can be uploaded from the CPU to the GPU memory 
and stored in textures. RGBA textures can be used 
to store 4 floating point data per texture unit (texel). 
Data is modified along the graphics pipeline and then 
written to the frame-buffer memory or rendered to a 
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