
1490

Stream Processing of a Neural Classifier I
M. Martínez-Zarzuela
University of Valladolid, Spain

F. J. Díaz Pernas
University of Valladolid, Spain

D. González Ortega
University of Valladolid, Spain

J. F. Díez Higuera
University of Valladolid, Spain

M. Antón Rodríguez
University of Valladolid, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

An Artificial Neural Network (ANN) is a computa-
tional structure inspired by the study of biological
neural processing. Although neurons are considered
as very simple computation units, inside the nervous
system, an incredible amount of widely inter-connected
neurons can process huge amounts of data working in
a parallel fashion. There are many different types of
ANNs, from relatively simple to very complex, just
as there are many theories on how biological neural
processing works. However, execution of ANNs is
always a heavy computational task. Important kinds
of ANNs are those devoted to pattern recognition such
as Multi-Layer Perceptron (MLP), Self-Organizing
Maps (SOM) or Adaptive Resonance Theory (ART)
classifiers (Haykin, 2007).

Traditional implementations of ANNs used by
most of scientists have been developed in high level
programming languages, so that they could be executed
on common Personal Computers (PCs). The main
drawback of these implementations is that though
neural networks are intrinsically parallel systems,
simulations are executed on a Central Processing
Unit (CPU), a processor designed for the execution
of sequential programs on a Single Instruction Single
Data (SISD) basis. As a result, these heavy programs
can take hours or even days to process large input data.
For applications that require real-time processing, it

is possible to develop small ad-hoc neural networks
on specific hardware like Field Programmable Gate
Arrays (FPGAs). However, FPGA-based realization
of ANNs is somewhat expensive and involves extra
design overheads (Zhu & Sutton, 2003).

Using dedicated hardware to do machine learning
was typically expensive; results could not be shared
with other researchers and hardware became obsolete
within a few years. This situation has changed recently
with the popularization of Graphics Processing Units
(GPUs) as low-cost and high-level programmable
hardware platforms. GPUs are being increasingly
used for speeding up computations in many research
fields following a Stream Processing Model (Owens,
Luebke, Govindaraju, Harris, Krüger, Lefohn & Pur-
cell, 2007).

This article presents a GPU-based parallel imple-
mentation of a Fuzzy ART ANN, which can be used
both for training and testing processes. Fuzzy ART is
an unsupervised neural classifier capable of incremental
learning, widely used in a universe of applications as
medical sciences, economics and finance, engineering
and computer science. CPU-based implementations
of Fuzzy ART lack efficiency and cannot be used for
testing purposes in real-time applications. The GPU
implementation of Fuzzy ART presented in this article
speeds up computations more than 30 times with respect
to a CPU-based C/C++ development when executed
on an NVIDIA 7800 GT GPU.

 1491

Stream Processing of a Neural Classifier I

S
BACKGROUND

Biological neural networks are able to learn and adapt
its structure based on the external or internal information
that flows through the network. Most types of ANNs
present the problem of catastrophic forgetting. Once
the network has been trained, if we want it to learn
from new inputs, it is necessary to repeat the whole
training process from the beginning. Otherwise, the
ANN would forget previously acquired knowledge. S.
Grossberg developed the Adaptive Resonance Theory
(ART) to address this problem (Grossberg, 1987). Fuzzy
ART is an extension of the original ART 1 system that
incorporates computations from fuzzy set theory into
the ART network, and thus making it possible to learn
and recognize both analog and binary input patterns
(Carpenter, Grossberg & Rosen, 1991).

GPUs are being considered in many fields of
computation and some researchers have made efforts
for integrating different kinds of ANNs on the GPU.
Most research has been done for implementing Multi-
Layer Perceptron (MLP) taking advantage of the GPU
performance in matrix-matrix products (Rolfes, 2004)
(Oh & Jung 2004) (Steinkraus, Simard & Buck 2005).
Other researchers have used the GPU for Self-Organiz-
ing Maps (SOM) with great results (Luo, Liu & Wu,
2005) (Campbell, Berglund & Streit, 2005). Bernhard
et al. achieved a speed increase of between 5 and 20
times simulating large networks of Spiking Neurons
on the GPU (Bernhard & Keriven, 2006). Finally,
Martínez-Zarzuela et al. developed a generic Fuzzy
ART ANN on the GPU achieving a speed up higher
than 30 over a CPU (Martínez-Zarzuela, Díaz, Díez
& Antón, 2007).

Commodity graphics cards provide a tremendous
computational horsepower. NVIDIA’s GeForce 7800
GTX GPU is able to sustain 165 GFLOPS against the
25.6 GFLOPS theoretical peak for the SSE units of
a dual-core 3.7 GHz Intel Pentium Extreme (Owens,
Luebke, Govindaraju, Harris, Krüger, Lefohn & Pur-
cell, 2007). Newest generation of graphics cards, like
NVIDIA Geforce 8800 Ultra, or AMD (ATI) Radeon
HD 2900 XT, can give a peak performance higher than
500 Gflops and 100 GB/s peak memory bandwidth.
Graphics cards manufacturers have recently discovered
the field of high performance computing as to be a target
market for their products and are providing specific
hardware and software to couple with enterprises and
researchers heavy computational requirements.

FUZZy ART NEURAL NETWORK
STREAM PROCESSING

This article describes a parallel implementation of a
Fuzzy ART ANN using a stream processing model. In
this uniform parallel processing paradigm a series of
computations, defined by one function or kernel, are
made over an ordered set of data or stream on a Single
Instruction Multiple Data (SIMD) basis. The main re-
striction of the model is also one of the reasons it can
provide large increases in performance and a simplified
programming model: operations on each stream element
are independent, allowing the execution of the kernel
on different hardware processing units simultaneously,
and avoiding stalls that could occur because of inter-
units data sharing.

GPUs used to have two types of programmable
processors, namely vertex and fragment processors.
Both kinds of processors were devised to operate on
four component vectors, as the basic primitives of 3D
computer graphics are 3D vertices in projected space
(x, y, z, w) and four component colors (red, green,
blue, alpha). Both vertex and fragment units could be
used to execute a kernel over a stream of data (Stream
Processing) and are programmed using shaders that can
be written using high level languages as Cg (Randima
& Kilgard, 2003), GLSL or HLSL. Latest generation
of GPUs, like nVIDIA GeForce 8800 GTX, do not
include fragment of vertex processors, but unified
Stream Processors (SPs): generalized floating-point
scalar processors capable of operating on vertices,
pixels, or any manner of data. These new GPUs can
be programmed using CUDA (Compute Unified De-
vice Architecture) Toolkit from nVIDIA. CUDA is
a promising new software development solution for
programming GPUs, simplifying software development
by using the standard C language. Before CUDA was
launched programming GPUs for General Purpose
computation (GPGPU) involved translating algorithms
into graphics terms (Harris, 2005). Other companies like
Rapidmind are developing easy-to-program APIs that
use just-in-time (JIT) compilers for translating source
code into a format that will work on several system’s
hardware (GPU, Cell or an x86 CPU). Arrays of data
can be uploaded from the CPU to the GPU memory
and stored in textures. RGBA textures can be used
to store 4 floating point data per texture unit (texel).
Data is modified along the graphics pipeline and then
written to the frame-buffer memory or rendered to a

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/stream-processing-neural-classifier/10435

Related Content

Adaptive Neural Algorithms for PCA and ICA
Radu Mutihac (2009). Encyclopedia of Artificial Intelligence (pp. 22-30).

www.irma-international.org/chapter/adaptive-neural-algorithms-pca-ica/10221

Ambulatory EEG Data Management System for Home Care Epileptic Patients: A Design Approach
Amol Pardhiand Suchita Varade (2022). International Journal of Ambient Computing and Intelligence (pp. 1-

15).

www.irma-international.org/article/ambulatory-eeg-data-management-system-for-home-care-epileptic-patients/311500

Towards a Design Process for Integrating Product Recommendation Services in E-Markets
Nikos Manouselisand Constantina Costopoulou (2008). Intelligent Information Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 2365-2382).

www.irma-international.org/chapter/towards-design-process-integrating-product/24408

Smart Content Selection for Public Displays in Ambient Intelligence Environments
Fernando Reinaldo Ribeiroand Rui José (2013). International Journal of Ambient Computing and Intelligence

(pp. 35-55).

www.irma-international.org/article/smart-content-selection-public-displays/77832

Stabilization of Mechanical Systems with Backlash by PI Loop Shaping
Ahmad Taher Azarand Fernando E. Serrano (2017). Artificial Intelligence: Concepts, Methodologies, Tools,

and Applications (pp. 2333-2360).

www.irma-international.org/chapter/stabilization-of-mechanical-systems-with-backlash-by-pi-loop-shaping/173427

http://www.igi-global.com/chapter/stream-processing-neural-classifier/10435
http://www.igi-global.com/chapter/stream-processing-neural-classifier/10435
http://www.irma-international.org/chapter/adaptive-neural-algorithms-pca-ica/10221
http://www.irma-international.org/article/ambulatory-eeg-data-management-system-for-home-care-epileptic-patients/311500
http://www.irma-international.org/chapter/towards-design-process-integrating-product/24408
http://www.irma-international.org/article/smart-content-selection-public-displays/77832
http://www.irma-international.org/chapter/stabilization-of-mechanical-systems-with-backlash-by-pi-loop-shaping/173427

