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INTRODUCTION

Over the past several decades, multilayer perceptrons 
(MLPs) have achieved increased popularity among 
scientists, engineers, and other professionals as tools for 
knowledge representation. Unfortunately, there is no a 
universal architecture which is suitable for all problems. 
Even with the correct architecture, frustrating problems 
of connection weights training still remain due to the 
rugged nature of the energy landscape of MLPs.  The 
energy function often refers to the sum-of-square error 
function for conventional MLPs and the negative log-
posterior density function for Bayesian MLPs.

This article presents a Monte Carlo method that 
can be used for MLP learning. The main focus is on 
how to apply the method to train connection weights 
for MLPs. How to apply the method to choose the 
optimal architecture and to make predictions for future 
values will also be discussed, but within the Bayesian 
framework. 

BACKGROUND
       
As known by many researchers, the energy landscape 
of an MLP is often rugged. The gradient-based training 
algorithms, such as back-propagation (Rumelhart et 
al., 1986), conjugate gradient, Newton’s method, and 
the BFGS algorithm (Broyden, 1970, Fletcher, 1970, 
Goldfarb, 1970, Shanno, 1970), tend to converge to 
a local minimum near the starting point, rendering 
the training data learned insufficiently. To reduce the 
chance of converging to local minima, a number of 
variants of these algorithms have been proposed based 
on the idea of perturbation (von Lehmen et al., 1988, 
Tang et al., 2003 and references therein). In practice, 
the effects of these perturbations are usually limited, 
which only delay the learning process converging to 
local minima a reasonable number of iterations (Ing-
man & Merlis, 1991).

To avoid the local-trap problem, simulated anneal-
ing (SA) (Kirkpatrick et al., 1983) has been employed 
by some authors to train neural networks. Amato et 
al. (1991) and Owen & Abunawass (1993) show that 
for complex learning tasks, SA has a better chance to 
converge to a global minimum than have the gradient-
based algorithms. Geman & Geman (1984) show that the 
global minimum can be reached by SA with probability 
1 if the temperature decreases at a logarithmic rate of 
O(1/log t), where t denotes the number of iterations.  
In practice, however, no one can afford to have such 
a slow cooling schedule. Most frequently, people use 
a linearly or geometrically decreasing cooling sched-
ule, which can no longer guarantee the global energy 
minimum to be reached (Holley, et al., 1989).

Other stochastic algorithms that have been used 
in MLP training include the genetic algorithm (Gold-
berg, 1989) and Markov chain Monte Carlo (MCMC). 
Although the genetic algorithm works well for some 
problems, see, e.g., van Rooij et al. (1996), there is no 
theory to support its convergence to global minima. 
MCMC algorithms are mainly used for Bayesian MLPs 
(MacKay, 1992a, Neal, 1996, Muller & Insua, 1998, de 
Freitas et al., 2000, Liang, 2003, 2005a,2005b), which 
will be discussed later. 

   
 

MAIN FOCUS OF THE CHAPTER

This article presents how the stochastic approximation 
Monte Carlo (SAMC) (Liang et al., 2007) algorithm 
can be used for MLP learning, including training, 
prediction and architecture selection.

A Brief Review for the SAMC Algorithm

Suppose that we are working with the Boltzmann 
distribution, 
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where Z is the normalizing constant, U(x) is the energy 
function, τ is the temperature, and Ω is the sample 
space. Without loss of generality, we assume that Ω is 
compact. For MLPs, x denotes the vector of connection 
weights, and Ω can be restricted to a hyper-rectangle 
[–BΩ, BΩ]dim(Ω), where BΩ is a large number such that 
Ω includes at least a global minimum of U(x). Fur-
thermore, we assume that the sample space can be 
partitioned according to the energy function into m 
disjoint subregions:  E1 = {x:U(x) ≤ u1}, E2 = {x:u1 < 
U(x) ≤ u2},…, Em–1 = {x:um–2 < U(x) ≤ um–1}, and Em = 
{x:U(x) > um–1}, where u1,...,um–1 are pre-specified real 
numbers. SAMC seeks to draw samples from each 
subregion with a pre-specified frequency. If this goal 
can be achieved, then the local-trap problem can be 
avoided successfully. Let xt+1 denote a sample simulated 
from the distribution 
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using the Metropolis-Hastings (MH) algorithm (Me-
tropolis et al., 1953, Hastings, 1970), where Ψ(x) = 
e–U(x)/τ and θt = (θt1,...,θtm) is an m-vector in a space Θ. 
For simplicity, we assume that Θ is compact, e.g., Θ 
= [– BΘ, BΘ]dim(0) with BΘ being a large number. Since 
adding to or subtracting from θt a constant will not 
change pθt

(x), θt can be kept in the compact set in simu-
lations by adjusting with an additive constant. Let the 
proposal distribution, q(x, y), of the MH moves satisfy 
the minorisation condition (Mengersen & Tweedie, 
1996), i.e., 

,
( )sup sup

( , )x y
p y

q x y
θ

θ∈Ω ∈Ω < ∞
   (3)

Since Ω is compact, a sufficient design for the 
minorisation condition is to choose q(x, y) as a global 
proposal distribution. A proposal distribution is said 
global if q(x, y) > 0 for all x, y ∈ Ω. For MLPs, q(x, y) 
can be chosen as a random walk Gaussian proposal,y ~ 
N(x, σ2I), where I is an identity matrix and σ2 is calibrated 
such that the MH moves have a desired acceptance rate. 
As discussed later, restricting the proposal distribution 
to be global ensures the convergence of the annealing 
SAMC algorithm to the global energy minima.

Let {γt} be a positive non-decreasing sequence 
satisfying the conditions: 
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for some δ ∈ (1, 2). For example, one can set
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for some values of t0 > 1 and 
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A large value of t0 will allow the sampler to reach all 
subregions very quickly, even in the presence of mul-
tiple local minima. Let � = (�1,..., �m) be an m-vector 
with 0 < �i < 1 and
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which defines a desired sampling frequency distribu-
tion on the subregions. With the above notations, an 
iteration of SAMC can be described as follows. 

SAMC Algorithm

a.  Generate xt+1 ~ Kθt 
 (xt,.) with a single MH step:

1.  Generate y according to the proposal dis-
tribution q(xt, y). 

2.  Calculate the ratio
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 where J(x) denote the index of the subregion 
that the sample x belongs to.

3.  Accept the proposal with probabilitymin(1, 
r). If it is accepted, set xt+1 = y; otherwise, 
set xt+1 = xt. 
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