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INTRODUCTION

A necessary condition for monitoring and control of 
a Power System (PS) is possessing a credible model 
of this system. The PS model for a need of dispatch-
ers in national control centre is created in real time. 
An important element of such a model is a topology 
model. PS Topology Verification (PSTV) is an impor-
tant problem in PS engineering. Often this problem is 
solved together with PS state estimation (Lukomski, 
& Wilkosz, 2000; Mai, Lefebvre, & Xuan, 2003). 
Methods, that enable such a solution of the problem, 
are sophisticated and usually time consuming. They 
require successful state estimation performance but 
convergence problems may occur in the case of certain 
Topology Errors (TEs). Thus, a robust method for PSTV 
before a state estimation is desired.

BACKGROUND 

Now, the growth rate of Artificial Neural Networks 
(ANNs) application in some PS subjects is observed 
(Haque, & Kashtiban, 2005). One of such a subject is 
PSTV. It can be considered as a pattern recognition 
problem and then also utilization of ANN technique 
for solution of PSTV can be taken into account (Alves 
da Silva, & Quintana, 1995; Souza, Leite da Silva, & 
Alves da Silva, 1996, 1997, 1998). There are many ref-
erences in which PSTV with use of ANNs is described. 
In (Tian, Zhu & Zhang, 1995) use of ANN as a part of 
an expert system to rule extraction is presented. One of 
the first method for such PSTV has assumed utilization 
of one ANN for whole PS (Vinod Kumar, Srivastava, 
Shah, & Mathur, 1996). In the case of this method the 
complexity of the ANN structure grows rapidly with 
the size of a power network. There are the problems 

with learning and classification process in a case of 
large ANNs. In other attempts to solve the problem of 
PSTV with use of ANNs one can observe utilization 
of additional knowledge on PS (Garcia-Lagos, Joya, 
Marin, & Sandoval, 2003; Delimar, Hebel, & Pavić, 
2001, 2002, 2003a, 2003b). Such approach allows 
reducing size of utilized ANNs. The learning and 
classification process become more effective and the 
verification method is more efficient. The considered 
approach is also utilized in the case of the method, 
which is further presented. 

DESCRIPTION OF THE CONSIDERED 
SOLUTION

To ensure that in the described method a larger knowl-
edge on PS will be utilized than it is in other methods 
for PSTV, so-called unbalance indices are introduced. 
Taking into account the nature of the solved problem 
and to accomplish the best features of the PSTV, Radial 
Basis Function Networks (RBFNs) are utilized. 

Power System Model

Elements of the PS topology model are nodes (repre-
senting electrical nodes) and branches (representing 
power lines, transformers, loads etc.). The assumption, 
that every branch in a PS model is modeled as the π 
-equivalent circuit (Fig. 1), is adopted. It is assumed 
that there is an accessible credible measurement data 
set of such quantities as: active and reactive power 
flows at the ends of each branch, power injections, 
loads and voltage magnitudes at each node. Usually, if 
a branch is not included in PS model the measurement 
data related to the branch are not taken into account in 
carried out analyses.
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Unbalance Indices

Using Kirchhoff’s and Ohm’s Laws, PS can be described 
by many relationships among measured quantities. If 
there are no TEs, all these relationships are fulfilled. 
When TE occurs some of the relationships become 
unfulfilled. It should be underlined that if a branch 
is not included in the PS model, the relationships for 
this branch are not considered, because measurement 
data for it are not taken into account. In the described 
approach to have possibility of examination of rela-
tionships for all nodes and all branches independently 
of their correct or incorrect inclusion in the PS model 
the so-called unbalance indices for nodes and branches 
are introduced (Lukomski, 2002). These indices are 
shown in Table 1. 

It should be noted that the nodal unbalance indices 
instead of power flow measurement data are taken into 
account when branch unbalance indices are calculated. 
This fact allows considering branch unbalance indices 
independently of correct or incorrect inclusion of 
branches in the PS model.

Unbalance indices create characteristic sets of 
values for different cases of modeling PS. If the topol-
ogy model is correct and there are no errors burdening 
measurement data, all nodal unbalance indices are equal 
to zero and branch unbalance indices are near to zero, 
as well. The same situation is, when there is a branch 
that is actually out of operation but it is included in 
the topology model (the inclusion error). If a branch 
is actually in operation in PS but it is not included in 
the topology model (the exclusion error), then; (i) the 
unbalance indices for terminal nodes of this branch 
considerably differ from zero, (ii) the unbalance indices 
for the considered branch are equal to zero, (iii) absolute 
values of the unbalance indices for other branches, that 
are incident to the nodes mentioned under (i), have 
especially large values.

It should be stressed that the behavior of unbalance 
indices for active power and for reactive power is the 
same for the same TE. 

Analyzing unbalance indices for nodes and branches 
one can observe that the exclusion error of the branch 
j has no influence on: (i) unbalance indices for nodes, 
that are not terminal nodes of the branch j, (ii) unbal-
ance indices for branches that are not incident to the 

Figure 1. The assumed π model of the branch, Zkl = Rkl 
+ j Xkl, Yk = jBkl, Yl  = jBlk, Bkl = Blk = B. B is a half of 
the capacitive susceptance of the branch.

Table 1.  Active and reactive power unbalance indices for nodes and branches

Node Branch
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Desc r ip t ion :  WPk, WQk, – unbalance indices for the node k for active and 
reactive power respectively; WPkl, WQkl – unbalance indices for the branch 
connecting the nodes k and l for active and reactive power respectively; Ik - a 
set of the nodes connected to the node k; Pki, Qki – active and reactive power 
flows in the branch connecting the nodes k and i at the node k; Rkl, Xkl, Bkl – π 
model parameters for the branch connecting the nodes k and l (Fig. 1); Vk, Vl 
– voltage magnitudes at the nodes k and l respectively;
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