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INTRODUCTION

Neural networks have been used in a number of robotic 
applications (Das & Kar, 2006; Fierro & Lewis, 1998), 
including both manipulators and mobile robots. A typi-
cal approach is to use neural networks for nonlinear 
system modelling, including for instance the learning 
of forward and inverse models of a plant, noise cancel-
lation, and other forms of nonlinear control (Fierro & 
Lewis, 1998). 

An alternative approach is to solve a particular 
problem by designing a specialized neural network 
architecture and/or learning rule (Sutton & Barto, 1981). 
It is clear that biological brains, though exhibiting a 
certain degree of homogeneity, rely on many specialized 
circuits designed to solve particular problems. 

We are interested in understanding how animals 
are able to solve complex problems such as learning 
to navigate in an unknown environment, with the aim 
of applying what is learned of biology to the control 
of robots (Chang & Gaudiano, 1998; Martínez-Marín, 
2007; Montes-González, Santos-Reyes & Ríos-
Figueroa, 2006). 

In particular, this article presents a neural architec-
ture that makes possible the integration of a kinematical 
adaptive neuro-controller for trajectory tracking and 
an obstacle avoidance adaptive neuro-controller for 
nonholonomic mobile robots. The kinematical adap-
tive neuro-controller is a real-time, unsupervised 
neural network that learns to control a nonholonomic 
mobile robot in a nonstationary environment, which 
is termed Self-Organization Direction Mapping Net-
work (SODMN), and combines associative learning 
and Vector Associative Map (VAM) learning to gen-
erate transformations between spatial and velocity 

coordinates (García-Córdova, Guerrero-González & 
García-Marín, 2007). The transformations are learned 
in an unsupervised training phase, during which the 
robot moves as a result of randomly selected wheel 
velocities. The obstacle avoidance adaptive neuro-
controller is a neural network that learns to control 
avoidance behaviours in a mobile robot based on a 
form of animal learning known as operant conditioning. 
Learning, which requires no supervision, takes place as 
the robot moves around a cluttered environment with 
obstacles. The neural network requires no knowledge 
of the geometry of the robot or of the quality, number, 
or configuration of the robot’s sensors. The efficacy of 
the proposed neural architecture is tested experimentally 
by a differentially driven mobile robot.

BACKGROUND

Several heuristic approaches based on neural networks 
(NNs) have been proposed for identification and adap-
tive control of nonlinear dynamic systems (Fierro & 
Lewis, 1998; Pardo-Ayala & Angulo-Bahón, 2007).

In wheeled mobile robots (WMR), the trajectory-
tracking problem with exponential convergence has 
been solved theoretically using time-varying state feed-
back based on the backstepping technique in (Ping & 
Nijmeijer, 1997; Das & Kar, 2006). Dynamic feedback 
linearization has been used for trajectory tracking and 
posture stabilization of mobile robot systems in chained 
form (Oriolo, Luca & Vendittelli, 2002).

The study of autonomous behaviour has become an 
active research area in the field of robotics. Even the 
simplest organisms are capable of behavioural feats un-
imaginable for the most sophisticated machines. When 
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an animal has to operate in an unknown environment 
it must somehow learn to predict the consequences 
of its own actions. Biological organisms are a clear 
example that this short of learning is possible in spite 
of what, from an engineering standpoint, seem to be 
insurmountable difficulties: noisy sensors, unknown 
kinematics and dynamics, nostationary statistics, and 
so on. A related form of learning is known as operant 
conditioning (Grossberg, 1971). Chang and Gaudiano 
(1998) introduce a neural network for obstacle avoid-
ance that is based on a model of classical and operant 
conditioning.

Psychologists have identified classical and operant 
conditioning as two primary forms of learning that 
enables animals to acquire the causal structure of their 
environment. In the classical conditioning paradigm, 
learning occurs by repeated association of a Condi-
tioned Stimulus (CS), which normally has no particular 
significance for an animal, with an Unconditioned 
Stimulus (UCS), which has significance for an animal 
and always gives rise to an Unconditioned Response 
(UCR). The response that comes to be elicited by the 
CS after classical conditioning is known as the Con-
ditioned Response (CR) (Grossberg & Levine, 1987). 
Hence, classical conditioning is the putative learning 
process that enables animals to recognize informative 
stimuli in the environment. 

In the case of operant conditioning, an animal learns 
the consequences of its actions. More specifically, the 
animal learns to exhibit more frequently a behaviour 
that has led to reward in the past, and to exhibit less 
frequently a behaviour that led to punishment.

In the field of neural networks research, it is often 
suggested that neural networks based on associative 
learning laws can model the mechanisms of classical 
conditioning, while neural networks based on rein-
forcement learning laws can model the mechanisms of 
operant conditioning (Chang & Gaudiano, 1998).

The reinforcement learning is used to acquire naviga-
tion skills for autonomous vehicles, and updates both 
the vehicle model and optimal behaviour at the same 
time (Galindo, González & Fernández-Madrigal, 2006; 
Lamiraux & Laumond, 2001; Galindo, Fernández-
Madrigal & González, 2007). 

In this article, we propose a neurobiologically in-
spired neural architecture to show how an organism, 
in this case a robot, can learn without supervision to 
recognize simple stimuli in its environment and to as-
sociate them with different actions.

ARCHITeCTURe Of THe NeURAl 
CONTROl SySTem

Figure 1(a) illustrates our proposed neural architecture. 
The trajectory tracking control without obstacles is 
implemented by the SODMN and a neural network 
of biological behaviour implements the avoidance 
behaviour of obstacles.

Self-Organization Direction mapping 
Network (SODmN)

The transformation of spatial directions to wheels an-
gular velocities is expressed like a linear mapping and 
is shown in Fig. 1(b). The spatial error is computed to 
get a spatial direction vector (DVs). The DVs is trans-
formed by the direction mapping network elements Vik 
to corresponding motor direction vector (DVm). On 
the other hand, a set of tonically active inhibitory cells, 
which receive broad-based inputs that determine the 
context of a motor action, was implemented as a context 
field. The context field selects the Vik elements based 
on the wheels angular velocities configuration.

A speed-control GO signal acts as a non-specific 
multiplicative gate and controls the movement’s overall 
speed. The GO signal is an input from a decision centre 
in the brain, and starts at zero before movement and 
then grows smoothly to a positive value as the move-
ment develops. During the learning, the GO signal is 
inactive.

Activities of cells of the DVs and DVm are rep-
resented in the neural network by quantities (S1, S2, 
..., Sm) and (R1, R2, ..., Rn), respectively. The direction 
mapping is formed with a field of cells with activities 
Vik. Each Vik cell receives the complete set of spatial 
inputs Sj, j = 1, ..., m, but connects to only one Ri cell. 
The direction mapping cells ( n k×∈V 

) compute a differ-
ence of activity between the spatial and motor direction 
vectors via feedback from DVm. During learning, this 
difference drives the adjustment of the weights. During 
performance, the difference drives DVm activity to the 
value encoded in the learned mapping.

A context field cell pauses when it recognizes a 
particular velocity state (i.e., a velocity configuration) 
on its inputs, and thereby disinhibits its target cells. 
The target cells (direction mapping cells) are com-
pletely shut off when their context cells are active (see 
Fig. 1(b)). Each context field cell projects to a set of 
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