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INTRODUCTION

Almost all autonomous robots need to navigate. We 
define navigation as do Franz & Mallot (2000): “Navi-
gation is the process of determining and maintaining 
a course or trajectory to a goal location” (p. 134).  We 
allow that this definition may be more restrictive than 
some readers are used to - it does not for example include 
problems like obstacle avoidance and position tracking 
- but it suits our purposes here. 

 Most algorithms published in the robotics literature 
localise in order to navigate (see e.g. Leonard & Dur-
rant-Whyte (1991a)). That is, they determine their own 
location and the position of the goal in some suitable 
coordinate system. This approach is problematic for 
several reasons.  Localisation requires a map of avail-
able landmarks (i.e. a list of landmark locations in 
some suitable coordinate system) and a description 
of those landmarks.  In early work, the human opera-
tor provided the robot with a map of its environment. 
Researchers have recently, though, developed simulta-
neous localisation and mapping (SLAM) algorithms 
which allow robots to learn environmental maps while 
navigating (Leonard & Durrant-Whyte (1991b)). Of 
course, autonomous SLAM algorithms must choose 
which landmarks to map and sense these landmarks from 
a variety of different positions and orientations.  Given 
a map, the robot has to associate sensed landmarks with 
those on the map.  This data association problem is 
difficult in cluttered real-world environments and is an 
area of active research. 

 We describe in this chapter an alternative approach 
to navigation called visual homing which makes no ex-
plicit attempt to localise and thus requires no landmark 
map.  There are broadly two types of visual homing 
algorithms: feature-based and image-based.  The feature- 
based algorithms, as the name implies, attempt to extract 
the same features from multiple images and use the change 
in the appearance of corresponding features to navigate. 
Feature correspondence  is - like data association - a 
difficult, open problem in real-world environments. 
We argue that image-based homing algorithms, which 

provide navigation information based on whole-image 
comparisons, are more suitable for real-world environ-
ments in contemporary robotics. 

BACKGROUND

Visual homing algorithms make no attempt to localise in 
order to navigate. No map is therefore required. Instead, an 
image IS (usually called a snapshot for historical reasons) 
is captured at a goal location S = (xS , yS).  Note that 
though S is defined as a point on a plane, most homing 
algorithms can be easily extended to three dimensions 
(see e.g. Zeil et al. (2003)) . When a homing robot seeks 
to return to S from a nearby position C = (xC , yC ), it takes 
an image IC and compares it with IS. The home vector H 
= S - C is inferred from  the disparity between IS and IC 
(vectors are in upper case and bold in this work).  The 
robot’s orientation at C and S is often different; if  this 
is the case, image disparity is meaningful only if IC is 
rotated to account for this difference. Visual homing 
algorithms differ in how this disparity is computed. 

Visual homing is an iterative process. The home vector 
H is frequently inaccurate, leading the robot closer to 
the goal position but not directly to it.  If H does not 
take the robot to the goal, another image IC is taken at 
the robot’s new position and the process is repeated. 

The images IS and IC are typically panoramic gray-
scale images.  Panoramic images  are useful because, 
for a given location (x,y) they contain the same image 
information regardless of the robot’s orientation. Most 
researchers use a camera imaging a hemispheric, coni-
cal or paraboloid mirror to create these images (see e.g. 
Nayar (1997)). 

Some visual homing algorithms extract features 
from IS and IC and use these to  compute image dis-
parity.  Alternatively, disparity can be computed from 
entire images, essentially treating each pixel as a viable 
feature.  Both feature-based and image-based visual 
homing algorithms are discussed below.
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Feature-based visual homing methods segment IS and 
IC into features and background (the feature extraction 
problem).  Each identified feature in the snapshot is 
then usually paired with one feature in IC (the corre-
spondence problem). The home vector is inferred from 
- depending on the algorithm - the change in the bearing 
and/or apparent size of the paired features. Generally, 
in order for feature-based homing algorithms to work 
properly, they must reliably solve the feature extraction 
and correspondence problems. 

 The Snapshot Model (Cartwright & Collett (1983)) 
- the first visual homing algorithm to appear in the literature 
and the source of the term “snapshot” to describe the goal 
image - matches each snapshot feature with the current 
feature closest in bearing (after both images are rotated 
to the same external compass orientation). Features in 
(Cartwright & Collett (1983)) were black cylinders in 
an otherwise empty environment. Two unit vectors, 
one radial and the other tangential, are associated with 
each feature pair. The radial vector is parallel to the 
bearing of the snapshot feature; the tangential vector is 
perpendicular to the radial vector.  The direction of the 
radial vector is chosen to move the agent so as to reduce 
the discrepancy in apparent size between paired features. 
The direction of the tangential vector is chosen to move 
the agent so as to reduce the discrepancy in bearing be-
tween paired features. The radial and tangential vectors 
for all feature pairs are averaged to produce a homing 
vector.  The Snapshot Model was devised to explain the 
behaviour of nest-seeking honeybees but has inspired 
several robotic visual homing algorithms.

One such algorithm is the Average Landmark Vector 
(ALV) Model (Möller et al.  (2001)). The ALV Model, 
like the Snapshot Model, extracts features from both IC 
and IS.  The ALV Model, though, does not explicitly solve 
the correspondence problem.  Instead, given features 
extracted from IS , the algorithm computes and stores a unit 
vector ALVS in the direction of the mean bearing to all 
features as seen from S.  At C, the algorithm extracts 
features from IC and computes their mean bearing, 
encoded in the unit vector ALVC . The home vector H 
is defined as  ALVC   - ALVS. Figure 1 illustrates home 
vector computation for a simple environment with four 
easily discernible landmarks.

Several other interesting feature-based homing al-
gorithms can be found in the literature. Unfortunately, 
space constraints prevent us from reviewing them here. 

Two algorithms of note are: visual homing by “surfing 
the epipoles” (Basri et al. (1998) and the Proportional 
Vector Model (Lambrinos et al. (2000)).

The Snapshot and ALV Models were tested by their 
creators in environments in which features contrasted 
highly with background and so were easy to extract.  
How is feature extraction and correspondence solved 
in real-world cluttered environments?  One method is 
described in Gourichon et al. (2002).  The authors use 
images converted to the HSV (Hue-Saturation-Value) 
colour space which is reported to be more resilient to 
illumination change than RGB.  Features are defined 
as image regions of approximately equal colour (identi-
fied using a computationally expensive region-growing 
technique).  Potential feature pairs are scored on their 
difference in average hue, average saturation, average 
intensity and bearing.  The algorithm searches for a set 
of pairings which maximise the sum of individual match 
scores.  The pairing scheme requires O(n2) pair-score 
computations (where n is the number of features).  The 
algorithm is sometimes fooled by features with similar 
colours (specifically, pairing a blue chair in the snapshot 
image with a blue door in the current image).  Gourichon 
et al. did not explore environments with changing light-
ing conditions. 

Several other methods feature extraction and corre-
spondence algorithms appear in the literature; see e.g. 
Rizzi et al. (2001), Lehrer & Bianco (2000) and Gaussier 
et al. (2000).   Many of these suffer from some of the 
same problems as the algorithm of Gourichon et al. 
described above.  The appearance of several compet-
ing feature extraction and correspondence algorithms 
in recent publications indicates that these are open 
and difficult problems; this is why we are advocating 
image-based homing in this chapter.  

Figure 1.  Illustration of Average Landmark Vector 
computation. See Section titled “Feature-based Visual 
Homing” for details 
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