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INTRODUCTION

Many-objective evolutionary optimisation is a recent 
research area that is concerned with the optimisation of 
problems consisting of a large number of performance 
criteria using evolutionary algorithms. Despite the 
tremendous development that multi-objective evolu-
tionary algorithms (MOEAs) have undergone over the 
last decade, studies addressing problems consisting of a 
large number of objectives are still rare. The main reason 
is that these problems cause additional challenges with 
respect to low-dimensional ones. This chapter gives a 
detailed analysis of these challenges, provides a critical 
review of the traditional remedies and methods for the 
evolutionary optimisation of many-objective problems 
and presents the latest advances in this field.

BACKGROUND

There has been considerable recent interest in the op-
timisation of problems consisting of more than three 
performance criteria, realm that was coined many-
objective optimisation by Farina and Amato (Farina, 
& Amato, 2002). To date, the vast majority of the 
literature has focused on two and three-dimensional 
problems (Deb, 2001). However, in recent years, the 
incorporation of multiple indicators into the problem 
formulation has clearly emerged as a prerequisite for 
a sound approach in many engineering applications 
(Coello Coello, Van Veldhuizen, & Lamont, 2002). 
Despite the tremendous development that MOEAs 
have undergone over the last decade, and their ample 
success in disparate applications, studies addressing 
high-dimensional real-life problems are still rare (Coello 
Coello, & Aguirre, 2002). The main reason is that 

many-objective problems cause additional challenges 
with respect to low-dimensional ones:

If the dimensionality of the objective space increases, 
then in general, the dimensionality of the Pareto-optimal 
front also increases.

The number of points required to characterise the 
Pareto-optimal front increases exponentially with the 
number of objectives considered.

It is clear that these two features represent a hin-
drance for most of the population-based methods, 
including MOEAs. In fact, in order to provide a good 
approximation of a high-dimensional optimal Pareto 
front, this class of algorithms must evolve populations 
of solutions of considerable size. This has a profound 
impact on their performance, since evaluating each in-
dividual solution may be a time-consuming task. Using 
smaller populations would not be a viable option, at least 
for Pareto-based algorithms, given the progressive loss 
of selective pressure they experience as the number of 
objectives increases, with a consequent deterioration of 
performances, as it is theoretically shown in (Farina, 
& Amato, 2004) and empirically evidenced in (Deb, 
2001, pages 404-405). In contrast to Pareto-based 
methods, traditional multi-objective optimisation ap-
proaches, which work by reducing the multi-objective 
problem into a series of parameterised single-objective 
ones that are solved in succession, are not affected by 
the curse of dimensionality. However, such strategies 
cause each optimisation to be executed independent to 
each other, thereby losing the implicit parallelism of 
population-based multi-objective algorithms.

The remainder of this chapter provides a detailed 
review of the methods proposed to address the first two 
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issues affecting many-objective evolutionary optimisa-
tion and discusses the latest advances in the field.

REmEDIAL mEASURES: 
STATE-OF-THE-ART

The possible remedies that have been proposed to ad-
dress the issues arising in evolutionary many-objective 
optimisation can be broadly classified as follows:

• aggregation, goals and priorities
• conditions of optimality
• dimensionality reduction

In the next sub-sections we give an overview of 
each of these methods and review the approaches that 
have been so far proposed.

Aggregation, Goals and Priorities

This class of methods tries and overcome the diffi-
culties described in the previous section through the 
decomposition of the original problem into a series of 
parameterised single-objective ones, that can then be 
solved by any classical or evolutionary algorithm.

Many aggregation-based methods have been pre-
sented so far and they are usually based on modifications 
of the weighted sum approach, such as the augmented 
Tchebycheff function, that are able to identify exposed 
solutions, and explore non-convex regions of the 
trade-off surface. However, the problem of selecting 
an effective strategy to vary weights or goals so that 
a representative approximation of the trade-off curve 
can be achieved is still unresolved.

The ε-constraint approach (Chankong, & Haimes, 
1983), which is based on minimisation of one (the 
most preferred or primary) objective function while 
considering the other objectives as constraints bound 
by some allowable levels, was also used in the context 
of evolutionary computing. The main limitation of this 
approach is its computational cost and the lack of an 
effective strategy to vary bound levels (ε). Recently, 
Laumanns et al. (Laumanns, Thiele, & Zitzler, 2006) 
proposed a variant of the original approach where they 
developed  a variation scheme based on the concept 
of ε-Pareto dominance (efficiency) (White, 1986) that 
adaptively generates constraint values, thus enabling 
the exhaustive exploration of the Pareto front, provided 

the scheme is coupled with an exact single-objective 
optimiser. It must be pointed out however, that none of 
the methods described above has ever been thoroughly 
tested in the context of many-objective optimisation. 

The Multiple Single Objective Pareto Sampling 
(MSOPS 1 & 2), an interesting hybridisation of the ag-
gregation method with goal specification, was presented 
in (Hughes, 2003, Hughes, 2005). In the MSOPS, the 
selective pressure is not provided by Pareto ranking. 
Instead, a set of user defined target vectors is used in 
turn, in conjunction with an aggregation method, to 
evaluate the performance of each solution at every 
generation of a MOEA. The greater is the number 
of targets that a solution nears, the better its rank. 
The authors suggested two aggregation methods: the 
weighted min-max approach (implemented in MSOPS) 
and the Vector-Angle-Distance-Scaling (implemented 
in MSOPS 2). The results indicated with statistical 
significance that NSGA-II (Deb, Pratap, Agarwal, & 
Meyarivan, 2002), the Pareto-based MOEA used for 
comparative purposes, was outperformed on many 
objective problems. This was also recently confirmed 
by Wagner et al. in (Wagner, Beume, & Naujoks, 2007), 
where they benchmarked traditional MOEAs, aggrega-
tion-based methods and indicator-based methods on 
a up to 6-objective problems and suggested a more 
effective method to generate the target vectors.

Conditions of Optimality

Recently, great attention has been given to the role 
that conditions of optimality may play in the context 
of many-objective evolutionary optimisation when 
used to rank trial solutions during the selection stage 
of MOEA in alternative to, or conjunction with, Pa-
reto efficiency. Farina et al. (Farina, & Amato, 2004) 
proposed the use of a fuzzy optimality condition, but 
did not provide a direct means to incorporate it into a 
MOEA. Köppen et al. (Koppen, Vincente-Garcia, & 
Nickolay, 2005) also suggested the fuzzification of the 
Pareto dominance relation, which was exploited within 
a generational elitist genetic algorithm on a synthetic 
MOP. The concept of knee (Deb, 2003), has also been 
exploited in the context of evolutionary many-objec-
tive optimisation. Simply stated, a knee is a portion of 
a Pareto surface where the marginal substitution rates 
are particularly high, i.e. a small improvement in one 
objective lead to a high deterioration of the others. A 
graphical representation is given in Figure 1. The idea 
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