
825

HHierarchical Reinforcement Learning
Carlos Diuk
Rutgers University, USA

Michael Littman
Rutgers University, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Reinforcement learning (RL) deals with the problem of
an agent that has to learn how to behave to maximize its
utility by its interactions with an environment (Sutton
& Barto, 1998; Kaelbling, Littman & Moore, 1996).
Reinforcement learning problems are usually formal-
ized as Markov Decision Processes (MDP), which
consist of a finite set of states and a finite number of
possible actions that the agent can perform. At any given
point in time, the agent is in a certain state and picks
an action. It can then observe the new state this action
leads to, and receives a reward signal. The goal of the
agent is to maximize its long-term reward.

In this standard formalization, no particular structure
or relationship between states is assumed. However,
learning in environments with extremely large state
spaces is infeasible without some form of generaliza-
tion. Exploiting the underlying structure of a problem
can effect generalization and has long been recognized
as an important aspect in representing sequential deci-
sion tasks (Boutilier et al., 1999).

Hierarchical Reinforcement Learning is the subfield
of RL that deals with the discovery and/or exploitation
of this underlying structure. Two main ideas come into
play in hierarchical RL. The first one is to break a task
into a hierarchy of smaller subtasks, each of which can
be learned faster and easier than the whole problem.
Subtasks can also be performed multiple times in the
course of achieving the larger task, reusing accumulated
knowledge and skills. The second idea is to use state
abstraction within subtasks: not every task needs to be
concerned with every aspect of the state space, so some
states can actually be abstracted away and treated as
the same for the purpose of the given subtask.

BACKGROUND

In this section, we will introduce the MDP formalism,
where most of the research in standard RL has been
done. We will then mention the two main approaches
used for learning MDPs: model-based and model-free
RL. Finally, we will introduce two formalisms that
extend MDPs and are widely used in the Hierarchical
RL field: semi-Markov Decision Processes (SMDPs)
and Factored MDPs.

Markov Decision Processes (MDPs)

A Markov Decision Process consists of:

• a set of states S
• a set of actions A
• a transition probability function: Pr(s’ | s, a),

representing the probability of the environment
transitioning to state s’ when the agent performs
action a from state s. It is sometimes notated T(s,
a, s’).

• a reward function: E[r | s, a], representing the
expected immediate reward obtained by taking
action a from state s.

• a discount factor γ ∈ (0, 1], that downweights
future rewards and whose precise role will be
clearer in the following equations.

A deterministic policy π:S -> A is a function that
determines, for each state, what action to take. For
any given policy π, we can define a value function Vπ,
representing the expected infinite-horizon discounted
return to be obtained from following such a policy
starting at state s:

Vπ(s) = E[r0 + γ r1+ γ2 r2 + γ3 r3 + …].

826

Hierarchical Reinforcement Learning

Bellman (1957) provides a recursive way of de-
termining the value function when the reward and
transition probabilities of an MDP are known, called
the Bellman equation:

Vπ(s) = R(s, π(s)) + γ Σs’∈S T(s, π(s), s’) Vπ(s’),

commonly rewritten as an action-value function or
Q-function:

Qπ(s,a) = R(s, a) + γ Σs’∈S T(s, a, s’) Vπ(s’).

An optimal policy π*(s) is a policy that returns the
action a that maximizes the value function:

π*(s) = argmaxa Q
*(s,a)

States can be represented as a set of state variables
or factors, representing different features of the envi-
ronment: s = <f1, f2, f3, … , fn>.

Learning in Markov Decision Processes
(mDPs)

The reinforcement-learning problem consists of de-
termining or approximating an optimal policy through
repeated interactions with the environment (i.e., based
on a sample of experiences of the form <state – action
– next state – reward>).

There are three main approaches to learning such
an optimal or near-optimal policy:

• Policy-search methods: learn a policy directly
via evaluation in the environment.

• Model-free (or direct) methods: learn the policy
by directly approximating the Q function with
updates from direct experience.

• Model-based (or indirect) methods: first learn
the transition probability and reward functions,
and use those to compute the Q function by means
of , for example, the Bellman equations.

Model-free algorithms are sometimes referred to as
the Q-learning family of algorithms. See Sutton (1988)
or Watkins (1989) for the first best-known examples.
It is known that model-free methods make inefficient
use of experience, but they do not require expensive

computation to obtain the Q function and the corre-
sponding optimal policy.

Model-based methods make more efficient use of
experience, and thus require less data, but they involve
an extra planning step to compute the value function,
which can be computationally expensive. Some well-
known algorithms can be found in the literature (Sutton,
1990; Moore & Atkeson, 1993; Kearns & Singh, 1998;
and Brafman & Tennenholtz, 2002).

Algorithms for reinforcement learning in MDP
environments suffers from what is known as the curse
of dimensionality: an exponential explosion in the total
number of states as a function of the number of state
variables. To cope with this problem, hierarchical
methods try to break down the intractable state space
into smaller pieces, which can be learned independently
and reused as needed. To achieve this goal, changes
need to be introduced to the standard MDP formal-
ism. In the introduction we mentioned the two main
ideas behind hierarchical RL: task decomposition and
state abstraction. Task decomposition implies that the
agent will not only be performing single-step actions,
but also full subtasks which can be extended in time.
Semi-Markov Decision Processes (SMDPs) will let
us represent these extended actions. State abstraction
means that, in certain contexts, certain aspects of the
state space will be ignored, and states will be grouped
together. Factored-state representations is one way of
dealing with this. The following section introduces these
two common formalisms used in the HRL literature.

Beyond MDPs: SMDPs and
Factored-State Representations

We’ll consider the limitations of the standard MDP
formalism by means of an illustrating example. Imagine
an agent whose task is to exit a multi-storyed office
building. The starting position of the agent is a certain
office in a certain floor, and the goal is to reach the
front door at ground level. To complete the task, the
agent has to first exit the room, find its way through
the hallways to the elevator, take the elevator to the
ground floor, and finally find its way from the elevator
to the exit. We would like to be able to reason in terms
of subtasks (e.g., “exit room”, “go to elevator”, “go
to floor X”, etc.), each of them of different durations
and levels of abstraction, each encompassing a series of

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/hierarchical-reinforcement-learning/10339

Related Content

Providing Clarity on Big Data Technologies: The BDTOnto Ontology
Matthias Volk, Daniel Staegemann, Naoum Jamous, Matthias Pohland Klaus Turowski (2020). International

Journal of Intelligent Information Technologies (pp. 49-73).

www.irma-international.org/article/providing-clarity-on-big-data-technologies/250280

Mehar Approach for Solving Shortest Path Problems With Interval-Valued Triangular Fuzzy Arc

Weights
Tanveen Kaur Bhatia, Amit Kumar, M. K. Sharmaand S. S. Appadoo (2022). International Journal of Fuzzy

System Applications (pp. 1-17).

www.irma-international.org/article/mehar-approach-for-solving-shortest-path-problems-with-interval-valued-triangular-fuzzy-

arc-weights/313428

Generative AI-Powered Chatbots: A Creative Catalyst for Co-Creation
Ajita Deshmukhand Natasha Maria Gomes (2024). Transforming Education With Generative AI: Prompt

Engineering and Synthetic Content Creation (pp. 82-101).

www.irma-international.org/chapter/generative-ai-powered-chatbots/338532

An Evolutionary Framework for Nonlinear Time-Series Prediction with Adaptive Gated Mixtures of

Experts
André L.V. Coelho, Clodoaldo A.M. Limaand Fernando J. Von Zuben (2007). Artificial Intelligence and

Integrated Intelligent Information Systems: Emerging Technologies and Applications (pp. 114-138).

www.irma-international.org/chapter/evolutionary-framework-nonlinear-time-series/5303

Using the Business Ontology to Develop Enterprise Standards
Mark von Rosingand Henrik von Scheel (2016). International Journal of Conceptual Structures and Smart

Applications (pp. 48-70).

www.irma-international.org/article/using-the-business-ontology-to-develop-enterprise-standards/171391

http://www.igi-global.com/chapter/hierarchical-reinforcement-learning/10339
http://www.igi-global.com/chapter/hierarchical-reinforcement-learning/10339
http://www.irma-international.org/article/providing-clarity-on-big-data-technologies/250280
http://www.irma-international.org/article/mehar-approach-for-solving-shortest-path-problems-with-interval-valued-triangular-fuzzy-arc-weights/313428
http://www.irma-international.org/article/mehar-approach-for-solving-shortest-path-problems-with-interval-valued-triangular-fuzzy-arc-weights/313428
http://www.irma-international.org/chapter/generative-ai-powered-chatbots/338532
http://www.irma-international.org/chapter/evolutionary-framework-nonlinear-time-series/5303
http://www.irma-international.org/article/using-the-business-ontology-to-develop-enterprise-standards/171391

