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INTRODUCTION

Reinforcement learning (RL) deals with the problem of 
an agent that has to learn how to behave to maximize its 
utility by its interactions with an environment (Sutton 
& Barto, 1998; Kaelbling, Littman & Moore, 1996). 
Reinforcement learning problems are usually formal-
ized as Markov Decision Processes (MDP), which 
consist of a finite set of states and a finite number of 
possible actions that the agent can perform. At any given 
point in time, the agent is in a certain state and picks 
an action. It can then observe the new state this action 
leads to, and receives a reward signal. The goal of the 
agent is to maximize its long-term reward. 

In this standard formalization, no particular structure 
or relationship between states is assumed. However, 
learning in environments with extremely large state 
spaces is infeasible without some form of generaliza-
tion. Exploiting the underlying structure of a problem 
can effect generalization and has long been recognized 
as an important aspect in representing sequential deci-
sion tasks (Boutilier et al., 1999).

Hierarchical Reinforcement Learning is the subfield 
of RL that deals with the discovery and/or exploitation 
of this underlying structure. Two main ideas come into 
play in hierarchical RL. The first one is to break a task 
into a hierarchy of smaller subtasks, each of which can 
be learned faster and easier than the whole problem. 
Subtasks can also be performed multiple times in the 
course of achieving the larger task, reusing accumulated 
knowledge and skills. The second idea is to use state 
abstraction within subtasks: not every task needs to be 
concerned with every aspect of the state space, so some 
states can actually be abstracted away and treated as 
the same for the purpose of the given subtask.

BACKGROUND

In this section, we will introduce the MDP formalism, 
where most of the research in standard RL has been 
done. We will then mention the two main approaches 
used for learning MDPs: model-based and model-free 
RL. Finally, we will introduce two formalisms that 
extend MDPs and are widely used in the Hierarchical 
RL field: semi-Markov Decision Processes (SMDPs) 
and Factored MDPs.

Markov Decision Processes (MDPs)

A Markov Decision Process consists of:

• a set of states S
• a set of actions A
• a transition probability function: Pr(s’ | s, a), 

representing the probability of the environment 
transitioning to state s’ when the agent performs 
action a from state s. It is sometimes notated T(s, 
a, s’).

• a reward function: E[r | s, a], representing the 
expected immediate reward obtained by taking 
action a from state s.

• a discount factor γ ∈ (0, 1], that downweights 
future rewards and whose precise role will be 
clearer in the following equations.

A deterministic policy π:S -> A is a function that 
determines, for each state, what action to take. For 
any given policy π, we can define a value function Vπ, 
representing the expected infinite-horizon discounted 
return to be obtained from following such a policy 
starting at state s:

Vπ(s) = E[r0 + γ r1+ γ2 r2 + γ3 r3 + …].
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Bellman (1957) provides a recursive way of de-
termining the value function when the reward and 
transition probabilities of an MDP are known, called 
the Bellman equation:

Vπ(s) = R(s, π(s)) + γ Σs’∈S T(s, π(s), s’) Vπ(s’),

commonly rewritten as an action-value function or 
Q-function: 

Qπ(s,a) = R(s, a) + γ Σs’∈S T(s, a, s’) Vπ(s’).

An optimal policy π*(s) is a policy that returns the 
action a that maximizes the value function:

π*(s) = argmaxa Q
*(s,a)

States can be represented as a set of state variables 
or factors, representing different features of the envi-
ronment: s = <f1, f2, f3, … , fn>.

Learning in Markov Decision Processes 
(mDPs)

The reinforcement-learning problem consists of de-
termining or approximating an optimal policy through 
repeated interactions with the environment (i.e., based 
on a sample of experiences of the form <state – action 
– next state – reward>). 

There are three main approaches to learning such 
an optimal or near-optimal policy:

• Policy-search methods: learn a policy directly 
via evaluation in the environment.

• Model-free (or direct) methods: learn the policy 
by directly approximating the Q function with 
updates from direct experience.

• Model-based (or indirect) methods: first learn 
the transition probability and reward functions, 
and use those to compute the Q function by means 
of , for example, the Bellman equations.

Model-free algorithms are sometimes referred to as 
the Q-learning family of algorithms. See Sutton (1988) 
or Watkins (1989) for the first best-known examples. 
It is known that model-free methods make inefficient 
use of experience, but they do not require expensive 

computation to obtain the Q function and the corre-
sponding optimal policy.

Model-based methods make more efficient use of 
experience, and thus require less data, but they involve 
an extra planning step to compute the value function, 
which can be computationally expensive. Some well-
known algorithms can be found in the literature (Sutton, 
1990; Moore & Atkeson, 1993; Kearns & Singh, 1998; 
and Brafman & Tennenholtz, 2002). 

Algorithms for reinforcement learning in MDP 
environments suffers from what is known as the curse 
of dimensionality: an exponential explosion in the total 
number of states as a function of the number of state 
variables. To cope with this problem, hierarchical 
methods try to break down the intractable state space 
into smaller pieces, which can be learned independently 
and reused as needed. To achieve this goal, changes 
need to be introduced to the standard MDP formal-
ism. In the introduction we mentioned the two main 
ideas behind hierarchical RL: task decomposition and 
state abstraction. Task decomposition implies that the 
agent will not only be performing single-step actions, 
but also full subtasks which can be extended in time. 
Semi-Markov Decision Processes (SMDPs) will let 
us represent these extended actions. State abstraction 
means that, in certain contexts, certain aspects of the 
state space will be ignored, and states will be grouped 
together. Factored-state representations is one way of 
dealing with this. The following section introduces these 
two common formalisms used in the HRL literature.

Beyond MDPs: SMDPs and 
Factored-State Representations

We’ll consider the limitations of the standard MDP 
formalism by means of an illustrating example. Imagine 
an agent whose task is to exit a multi-storyed office 
building. The starting position of the agent is a certain 
office in a certain floor, and the goal is to reach the 
front door at ground level. To complete the task, the 
agent has to first exit the room, find its way through 
the hallways to the elevator, take the elevator to the 
ground floor, and finally find its way from the elevator 
to the exit. We would like to be able to reason in terms 
of subtasks (e.g., “exit room”, “go to elevator”, “go 
to floor X”, etc.), each of them of different durations 
and levels of abstraction, each encompassing a series of 
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