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INTRODUCTION

Evolutionary computation (EC) is the study of com-
putational systems that borrow ideas from and are 
inspired by natural evolution and adaptation (Yao & 
Xu, 2006, pp. 1-18). EC covers a number of techniques 
based on evolutionary processes and natural selection: 
evolutionary strategies, genetic algorithms and genetic 
programming (Keedwell & Narayanan, 2005). 

Evolutionary strategies are an approach for effi-
ciently solving certain continuous problems, yielding 
good results for some parametric problems in real 
domains. Compared with genetic algorithms, evolu-
tionary strategies run more exploratory searches and 
are a good option when applied to relatively unknown 
parametric problems.

Genetic algorithms emulate the evolutionary process 
that takes place in nature. Individuals compete for sur-
vival by adapting as best they can to the environmental 
conditions. Crossovers between individuals, mutations 
and deaths are all part of this process of adaptation. By 
substituting the natural environment for the problem 
to be solved, we get a computationally cheap method 
that is capable of dealing with any problem, provided 
we know how to determine individuals’ fitness (Man-
rique, 2001).

Genetic programming is an extension of genetic 
algorithms (Couchet, Manrique, Ríos & Rodríguez-
Patón, 2006). Its aim is to build computer programs 
that are not expressly designed and programmed by a 
human being. It can be said to be an optimization tech-
nique whose search space is composed of all possible 
computer programs for solving a particular problem. 
Genetic programming’s key advantage over genetic 

algorithms is that it can handle individuals (computer 
programs) of different lengths. 

Grammar-guided genetic programming (GGGP) 
is an extension of traditional GP systems (Whigham, 
1995, pp. 33-41). The difference lies in the fact that 
they employ context-free grammars (CFG) that gen-
erate all the possible solutions to a given problem as 
sentences, establishing this way the formal definition of 
the syntactic problem constraints, and use the deriva-
tion trees for each sentence to encode these solutions 
(Dounias, Tsakonas, Jantzen, Axer, Bjerregard & von 
Keyserlingk, D. 2002, pp. 494-500). The use of this 
type of syntactic formalisms helps to solve the so-called 
closure problem (Whigham, 1996). To achieve closure 
valid individuals (points that belong to the search 
space) should always be generated. As the generation 
of invalid individuals slows down convergence speed a 
great deal, solving this problem will very much improve 
the GP search capability. The basic operator directly 
affecting the closure problem is crossover: crossing 
two (or any) valid individuals should generate a valid 
offspring. Similarly, this is the operator that has the 
biggest impact on the process of convergence towards 
the optimum solution. Therefore, this article reviews 
the most important crossover operators employed in 
GP and GGGP, highlighting the weaknesses existing 
nowadays in this area of research. We also propose a 
GGGP system. This system incorporates the original 
idea of employing ambiguous CFG to overcome these 
weaknesses, thereby increasing convergence speed and 
reducing the likelihood of trapping in local optima. 
Comparative results are shown to empirically cor-
roborate our claims. 
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Koza defined one of the first major crossover operators 
(KX) (1992). This approach randomly swaps subtrees 
in both parents to generate offspring. Therefore, it 
tends to disaggregate the so-called building blocks 
across the trees (that represent the individuals). The 
building blocks are those subtrees that improve fitness. 
This over-expansion has a negative effect on the fit-
ness of the individuals. Also, this operator’s excessive 
exploration capability leads to another weakness: an 
increase in the size of individuals, which affects system 
performance, and results in a lower convergence speed 
(Terrio & Heywood, 2002). This effect is known as 
bloat or code bloat. 

There is another important drawback: many of 
the generated offspring are syntactically invalid as 
the crossovers are done completely at random. These 
individuals should not be part of the new population 
because they do not provide a valid solution. This 
seriously undermines the convergence process. Figure 
1 shows a situation where one of the two individuals 
generated after Koza’s crossover breaches the con-
straints established by a hypothetical grammar whose 
sentences represent arithmetic equalities.

The strong context preservative crossover operator 
(SCPC) avoids the problem of desegregation of building 

blocks (also called context) across the trees by setting 
severe (strong) constraints for tree nodes considered 
as possible candidates for selection as crossover nodes 
(D’haesler, 1994, pp. 379-407). A system of coordinates 
is defined to univocally identify each node in a deriva-
tion tree. The position of each node within the tree is 
specified along the path that must be followed to reach 
a given node from the root. To do this, the position of a 
node is described by means of a tuple of n coordinates 
T = (b1, b2,…, bn), where n is the node’s depth in the 
tree, and bi indicates which branch is selected at depth i 
(counting from left to right). Figure 2 shows an example 
representing this system of coordinates. 

Only nodes with the same coordinates from both 
parents can be swapped. For this reason, a subtree may 
possibly never migrate to another place in the tree. This 
limitation can cause serious search space exploration 
problems, as the whole search space cannot be covered 
unless each function and terminal appears at every pos-
sible coordinate at least once in any one individual in 
the population. This failure to migrate building blocks 
causes them to evolve separately in each region, causing 
a too big an exploitation capability, thereby increasing 
the likelihood of trapping in local optima (Barrios, 
Carrascal, Manrique & Ríos, 2003, pp. 275-293).

As time moves on, the code bloat phenomenon 
becomes a serious problem and takes an ever more 
prominent role. To avoid this, Crawford-Marks & 

Figure 1. Incorrect operation of Koza’s crossover operator
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