
767

GGrammar-Guided Genetic Programming
Daniel Manrique
Inteligencia Artificial, Facultad de Informatica, UPM, Spain

Juan Ríos
Inteligencia Artificial, Facultad de Informatica, UPM, Spain

Alfonso Rodríguez-Patón
Inteligencia Artificial, Facultad de Informatica, UPM, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Evolutionary computation (EC) is the study of com-
putational systems that borrow ideas from and are
inspired by natural evolution and adaptation (Yao &
Xu, 2006, pp. 1-18). EC covers a number of techniques
based on evolutionary processes and natural selection:
evolutionary strategies, genetic algorithms and genetic
programming (Keedwell & Narayanan, 2005).

Evolutionary strategies are an approach for effi-
ciently solving certain continuous problems, yielding
good results for some parametric problems in real
domains. Compared with genetic algorithms, evolu-
tionary strategies run more exploratory searches and
are a good option when applied to relatively unknown
parametric problems.

Genetic algorithms emulate the evolutionary process
that takes place in nature. Individuals compete for sur-
vival by adapting as best they can to the environmental
conditions. Crossovers between individuals, mutations
and deaths are all part of this process of adaptation. By
substituting the natural environment for the problem
to be solved, we get a computationally cheap method
that is capable of dealing with any problem, provided
we know how to determine individuals’ fitness (Man-
rique, 2001).

Genetic programming is an extension of genetic
algorithms (Couchet, Manrique, Ríos & Rodríguez-
Patón, 2006). Its aim is to build computer programs
that are not expressly designed and programmed by a
human being. It can be said to be an optimization tech-
nique whose search space is composed of all possible
computer programs for solving a particular problem.
Genetic programming’s key advantage over genetic

algorithms is that it can handle individuals (computer
programs) of different lengths.

Grammar-guided genetic programming (GGGP)
is an extension of traditional GP systems (Whigham,
1995, pp. 33-41). The difference lies in the fact that
they employ context-free grammars (CFG) that gen-
erate all the possible solutions to a given problem as
sentences, establishing this way the formal definition of
the syntactic problem constraints, and use the deriva-
tion trees for each sentence to encode these solutions
(Dounias, Tsakonas, Jantzen, Axer, Bjerregard & von
Keyserlingk, D. 2002, pp. 494-500). The use of this
type of syntactic formalisms helps to solve the so-called
closure problem (Whigham, 1996). To achieve closure
valid individuals (points that belong to the search
space) should always be generated. As the generation
of invalid individuals slows down convergence speed a
great deal, solving this problem will very much improve
the GP search capability. The basic operator directly
affecting the closure problem is crossover: crossing
two (or any) valid individuals should generate a valid
offspring. Similarly, this is the operator that has the
biggest impact on the process of convergence towards
the optimum solution. Therefore, this article reviews
the most important crossover operators employed in
GP and GGGP, highlighting the weaknesses existing
nowadays in this area of research. We also propose a
GGGP system. This system incorporates the original
idea of employing ambiguous CFG to overcome these
weaknesses, thereby increasing convergence speed and
reducing the likelihood of trapping in local optima.
Comparative results are shown to empirically cor-
roborate our claims.

768

Grammar-Guided Genetic Programming

BACKGROUND

Koza defined one of the first major crossover operators
(KX) (1992). This approach randomly swaps subtrees
in both parents to generate offspring. Therefore, it
tends to disaggregate the so-called building blocks
across the trees (that represent the individuals). The
building blocks are those subtrees that improve fitness.
This over-expansion has a negative effect on the fit-
ness of the individuals. Also, this operator’s excessive
exploration capability leads to another weakness: an
increase in the size of individuals, which affects system
performance, and results in a lower convergence speed
(Terrio & Heywood, 2002). This effect is known as
bloat or code bloat.

There is another important drawback: many of
the generated offspring are syntactically invalid as
the crossovers are done completely at random. These
individuals should not be part of the new population
because they do not provide a valid solution. This
seriously undermines the convergence process. Figure
1 shows a situation where one of the two individuals
generated after Koza’s crossover breaches the con-
straints established by a hypothetical grammar whose
sentences represent arithmetic equalities.

The strong context preservative crossover operator
(SCPC) avoids the problem of desegregation of building

blocks (also called context) across the trees by setting
severe (strong) constraints for tree nodes considered
as possible candidates for selection as crossover nodes
(D’haesler, 1994, pp. 379-407). A system of coordinates
is defined to univocally identify each node in a deriva-
tion tree. The position of each node within the tree is
specified along the path that must be followed to reach
a given node from the root. To do this, the position of a
node is described by means of a tuple of n coordinates
T = (b1, b2,…, bn), where n is the node’s depth in the
tree, and bi indicates which branch is selected at depth i
(counting from left to right). Figure 2 shows an example
representing this system of coordinates.

Only nodes with the same coordinates from both
parents can be swapped. For this reason, a subtree may
possibly never migrate to another place in the tree. This
limitation can cause serious search space exploration
problems, as the whole search space cannot be covered
unless each function and terminal appears at every pos-
sible coordinate at least once in any one individual in
the population. This failure to migrate building blocks
causes them to evolve separately in each region, causing
a too big an exploitation capability, thereby increasing
the likelihood of trapping in local optima (Barrios,
Carrascal, Manrique & Ríos, 2003, pp. 275-293).

As time moves on, the code bloat phenomenon
becomes a serious problem and takes an ever more
prominent role. To avoid this, Crawford-Marks &

Figure 1. Incorrect operation of Koza’s crossover operator

S

N

EE

E

N N

N

EE

E

N

S

F E

N N

Subtrees to be swapped

Crossover node in
parent 2

S

+

N

EN

E

3 N
N

EE

E

N

S

E

E

N

N

Crossover node in
parent 1

=

7+

46
4

23

8

=

4

=

7

6

2

+

-

=

4

8

F

-

+

Invalid
production

5 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/grammar-guided-genetic-programming/10331

Related Content

Moth-Flame Optimization Algorithm Based Multilevel Thresholding for Image Segmentation
Abdul Kayom Md Khairuzzamanand Saurabh Chaudhury (2018). Intelligent Systems: Concepts,

Methodologies, Tools, and Applications (pp. 771-797).

www.irma-international.org/chapter/moth-flame-optimization-algorithm-based-multilevel-thresholding-for-image-

segmentation/205808

Decision Support Systems and their Application in Construction
Alaa Abdou, Moh’d Radaidehand John Lewis (2008). Intelligent Information Technologies: Concepts,

Methodologies, Tools, and Applications (pp. 1285-1303).

www.irma-international.org/chapter/decision-support-systems-their-application/24342

KStore: A Dynamic Meta-Knowledge Repository for Intelligent BI
Jane Campbell Mazzagatti (2009). International Journal of Intelligent Information Technologies (pp. 68-80).

www.irma-international.org/article/kstore-dynamic-meta-knowledge-repository/2452

Distribution of Artificial Intelligence in Digital Games
Shaun Downeyand Darryl Charles (2015). International Journal of Intelligent Information Technologies (pp. 1-

14).

www.irma-international.org/article/distribution-of-artificial-intelligence-in-digital-games/139467

Big Data Analytics With Machine Learning and Deep Learning Methods for Detection of Anomalies

in Network Traffic
Valliammal Narayanand Shanmugapriya D. (2020). Handbook of Research on Machine and Deep Learning

Applications for Cyber Security (pp. 317-346).

www.irma-international.org/chapter/big-data-analytics-with-machine-learning-and-deep-learning-methods-for-detection-of-

anomalies-in-network-traffic/235048

http://www.igi-global.com/chapter/grammar-guided-genetic-programming/10331
http://www.igi-global.com/chapter/grammar-guided-genetic-programming/10331
http://www.irma-international.org/chapter/moth-flame-optimization-algorithm-based-multilevel-thresholding-for-image-segmentation/205808
http://www.irma-international.org/chapter/moth-flame-optimization-algorithm-based-multilevel-thresholding-for-image-segmentation/205808
http://www.irma-international.org/chapter/decision-support-systems-their-application/24342
http://www.irma-international.org/article/kstore-dynamic-meta-knowledge-repository/2452
http://www.irma-international.org/article/distribution-of-artificial-intelligence-in-digital-games/139467
http://www.irma-international.org/chapter/big-data-analytics-with-machine-learning-and-deep-learning-methods-for-detection-of-anomalies-in-network-traffic/235048
http://www.irma-international.org/chapter/big-data-analytics-with-machine-learning-and-deep-learning-methods-for-detection-of-anomalies-in-network-traffic/235048

