
501

DDisk-Based Search
Stefan Edelkamp
University of Dortmund, Germany

Shahid Jabbar
University of Dortmund, Germany

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

The need to deal with large data sets is at the heart of
many real-world problems. In many organizations the
data size has already surpassed Petabytes (1015). It is
clear that to process such an enormous amount of data,
the physical limitations of RAM is a major hurdle. How-
ever, the media that can hold huge data sets, i.e., hard
disks, are about a 10,000 to 1,000,000 times slower to
access than RAM. On the other hand, the costs for large
amounts of disk space have considerably decreased.
This growing disparity has led to a rising attention to
the design of external memory algorithms (Sanders et
al., 2003) in recent years.

In a hard disk, random disk accesses are slow due
to disk latency in moving the head on top of the data.
But once the head is at its proper position, data can be
read very rapidly. External memory algorithms exploit
this fact by processing the data in the form of blocks.
They are more informed about the future accesses to the
data and can organize their execution to have minimum
number of block accesses.

Traditional graph search algorithms perform well
as long as the graph can fit into the RAM. But for large
graphs these algorithms are destined to fail. In the fol-
lowing, we will review some of the advances in the field
of search algorithms designed for large graphs.

BACKGROUND

Most modern operating systems provide a general-
purpose memory management scheme called Vir-
tual Memory to compensate for the limited RAM.
Unfortunately, such schemes pay off only when the
algorithm’s memory accesses are local, i.e., it works on
a particular memory address range for a while, before
switching the attention to another range. Search algo-
rithms, especially those that order the nodes on some

particular node property, do not show such behaviour.
They jump back and forth to pick the best node, in a
spatially unrelated way for only marginal differences
in the node property.

External memory algorithms are designed with a
hierarchy of memories in mind. They are analyzed on an
external memory model as opposed to the traditional von
Neumann RAM model. We use the two-level memory
model by Vitter and Shriver (1994) to describe the search
algorithms. The model provides the necessary tools to
analyze the asymptotic number of block accesses (I/O
operations) as the input size grows. It consists of

• M: Size of the internal memory in terms of the
number of elements,

• N >>M: Size of the input in terms of the number
of elements, and

• B: Size of the data block that can be transferred
between the internal memory and the hard disk;
transferring one such block is called as a single
I/O operation.

The complexity of external memory algorithms
is conveniently expressed in terms of predefined I/O
operations, such as, scan(N) for scanning a file of size
N with a complexity of Θ(N/B) I/Os, and sort(N) for
external sorting a file of size N with a complexity of
Θ(N/B logM/B (N/B)) I/Os. With additional parameters
the model can accommodate multiple disks and multiple
processors too.

In the following, we assume a graph as a tuple (V, E,
c), where V is the set of nodes, E the set of edges, and
c the weight function that assigns a non-zero positive
integer to each edge. If all edges have the same weight,
the component c can be dropped and the graphs are
called as unweighted. Given a start node s and a goal
node g, we require the search algorithm to return an
optimal path wrt. the weight function.

502

Disk-Based Search

EXTERNAl MEMORy SEARCH
AlGORITHMS

External Memory Breadth-First Search

Breadth-first search (BFS) is one of the basic search
algorithms. It explores a graph by first expanding the
nodes that are closest to the start node. BFS for ex-
ternal memory has been proposed by Munagala and
Ranade (1999). It only considers undirected and explicit
(provided beforehand in the form of adjacency lists)
graphs. The working of the algorithm is illustrated on a
graph in Fig. 1. Let Open(i) be the set of nodes at BFS
level i residing on disk. The algorithm builds Open(i)
from Open(i-1) as follows. Let Succ(Open(i-1)) be the
multi-set of successors of nodes in Open(i-1); this set
is created by concatenating all adjacency lists of nodes
in Open(i-1). As there can be multiple copies of the
same node in this set the next step is to remove these
duplicate nodes. In an internal memory setting this
can be done easily using a hash table. Unfortunately,
in an external setting a hash-table is not affordable due
to random accesses to its contents. Therefore, we rely
on alternative methods of duplicates’ removal that are
well-suited for large data on disk. The first step is to
sort the successor set using external sorting algorithms
resulting in duplicate nodes lying adjacent to each

other. By an external scanning of this sorted set, all
duplicates are removed. Still, there can be nodes in
this set that have already been expanded in the pre-
vious layers. Munagala and Ranade proved that for
undirected graphs, it is sufficient to subtract only two
layers, Open(i–1) and Open(i–2), from Open(i). Since
all three lists are sorted, this can be done by a parallel
external scanning. The accumulated I/O complexity of
this algorithm is O(|V| + sort(|E|)) I/Os, where |V| is
for the unstructured access to the adjacency lists, and
sort(|E|) for duplicates removal.

An implicit graph variant of the above algo-
rithm has been proposed by Korf (2003). It applies
O(sort(|Succ(Open(i–1))|) +scan(|Open(i–1)| +
|Open(i–2)|))) I/Os in each iteration. Since no explicit
access to the adjacency list is needed (as the state space
is generated on-the-fly), by using Σi |Succ(Open(i))| =
O(|E|) and Σi |Open(i)| = O(|V|), the total execution time
is bounded by O(sort(|E|)+ scan(|V|)) I/Os.

To reconstruct a solution path, we may store pred-
ecessor information with each node on disk (thus
doubling the state vector size). Starting from the goal
node, we recursively search for its predecessor in the
previous layer through external scanning. The process
continues until the first layer containing the start node
is reached. Since the Breadth-first search preserves
the shortest paths in a uniformly weighted graph, the

Figure 1. An example graph (left); Stages of External Breadth-First Search (right). Each horizontal bar cor-
responds to a file. The grey-shaded A(2) and A’(2) are temporary files.

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/disk-based-search/10293

Related Content

The Effect of Emotional Intelligence Applications on the Lifestyle of the Elderly
Zahra Alidousti Shahrakiand Mohsen Aghabozorgi Nafchi (2023). Multidisciplinary Applications of Deep

Learning-Based Artificial Emotional Intelligence (pp. 216-233).

www.irma-international.org/chapter/the-effect-of-emotional-intelligence-applications-on-the-lifestyle-of-the-elderly/313353

Applying Digital Storytelling to Business Planning
Yoko Takeda (2016). Computational and Cognitive Approaches to Narratology (pp. 140-163).

www.irma-international.org/chapter/applying-digital-storytelling-to-business-planning/159623

Artificial Immune Systems for Anomaly Detection in Ambient Assisted Living Applications
Sebastian Bersch, Djamel Azzi, Rinat Khusainovand Ifeyinwa E. Achumba (2013). International Journal of

Ambient Computing and Intelligence (pp. 1-15).

www.irma-international.org/article/artificial-immune-systems-for-anomaly-detection-in-ambient-assisted-living-

applications/101949

A Study on Risk Management in Financial Market
Smruti Rekha Das, Kuhoo, Debahuti Mishraand Pradeep Kumar Mallick (2019). Emerging Trends and

Applications in Cognitive Computing (pp. 182-197).

www.irma-international.org/chapter/a-study-on-risk-management-in-financial-market/219000

DBN Models for Visual Tracking and Prediction
Qian Diao, Jianye Lu, Wei Hu, Yimin Zhangand Gary Bradski (2007). Bayesian Network Technologies:

Applications and Graphical Models (pp. 176-193).

www.irma-international.org/chapter/dbn-models-visual-tracking-prediction/5501

http://www.igi-global.com/chapter/disk-based-search/10293
http://www.igi-global.com/chapter/disk-based-search/10293
http://www.irma-international.org/chapter/the-effect-of-emotional-intelligence-applications-on-the-lifestyle-of-the-elderly/313353
http://www.irma-international.org/chapter/applying-digital-storytelling-to-business-planning/159623
http://www.irma-international.org/article/artificial-immune-systems-for-anomaly-detection-in-ambient-assisted-living-applications/101949
http://www.irma-international.org/article/artificial-immune-systems-for-anomaly-detection-in-ambient-assisted-living-applications/101949
http://www.irma-international.org/chapter/a-study-on-risk-management-in-financial-market/219000
http://www.irma-international.org/chapter/dbn-models-visual-tracking-prediction/5501

