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INTRODUCTION

Survival analysis is used when we wish to study the 
occurrence of some event in a population of subjects 
and the time until the event of interest. This time is 
called survival time or failure time. Survival analysis 
is often used in industrial life-testing experiments and 
in clinical follow-up studies. Examples of application 
include: time until failure of a light bulb, time until 
occurrence of an anomaly in an electronic circuit, time 
until relapse of cancer, time until pregnancy.

In the literature we find many different modeling 
approaches to survival analysis. Conventional para-
metric models may involve too strict assumptions on 
the distributions of failure times and on the form of 
the influence of the system features on the survival 
time, assumptions which usually extremely simplify 
the experimental evidence, particularly in the case of 
medical data (Cox & Oakes, 1984). In contrast, semi-
parametric models do not make assumptions on the 
distributions of failures, but instead make assumptions 
on how the system features influence the survival time 
(the usual assumption is the proportionality of hazards); 
furthermore, these models do not usually allow for direct 
estimation of survival times. Finally, non-parametric 
models usually only allow for a qualitative description 
of the data on the population level.

Neural networks have recently been used for survival 
analysis; for a survey on the current use of neural net-
works, and some previous attempts at neural network 

survival modeling we refer to (Bakker & Heskes, 1999), 
(Biganzoli et al., 1998), (Eleuteri et al., 2003), (Lisboa 
et al., 2003), (Neal, 2001), (Ripley & Ripley, 1998), 
(Schwarzer et al. 2000).

Neural networks provide efficient parametric es-
timates of survival functions, and, in principle, the 
capability to give personalised survival predictions. In 
a medical context, such information is valuable both 
to clinicians and patients. It helps clinicians to choose 
appropriate treatment and plan follow-up efficiently. 
Patients at high risk could be followed up more fre-
quently than those at lower risk in order to channel 
valuable resources to those who need them most. For 
patients, obtaining information about their prognosis 
is also extremely valuable in terms of planning their 
lives and providing care for their dependents.

In this article we describe a novel neural network 
model aimed at solving the survival analysis problem 
in a continuous time setting; we provide details about 
the Bayesian approach to modeling, and a sample ap-
plication on real data is shown.

BACKGROUND

Let T denote an absolutely continuous positive random 
variable, with distribution function P, representing the 
time of occurrence of an event. The survival function, 
S(t), is defined as:
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C
S(t)=Pr(T>t),

that is, the probability of surviving beyond time t. We 
shall generally assume that the survival function also 
depends on a set of covariates, represented by the vector 
x (which can itself be assumed to be a random variable). 
An important function related to the survival function 
is the hazard rate (Cox & Oakes, 1984), defined as:

hr (t) = P’(t)/S(t)

where P’ is the density associated to P. The hazard 
rate can be interpreted as the instantaneous force of 
mortality.

In many survival analysis applications we do not 
directly observe realisations of the random variable T; 
therefore we must deal with a missing data problem. The 
most common form of missingness is right censoring, 
i.e., we observe realisations of the random variable:

Z=min(T,C),

where C is a random variable whose distribution is usu-
ally  unknown. We shall use a censoring indicator d to 
denote whether we have observed an event (d=1) or not 
(d=0). It can be shown that inference does not depend 
on the distribution of C (Cox & Oakes, 1984).

With the above definitions in mind we can now 
formulate the log-likelihood function necessary for 
statistical inference. We shall omit the details, and only 
report the analytical form:

0

log ( , ) ( , )d .
it

i r i i r i
i

L d h t x h u x u= −∑ ∫

For further details, we refer the reader to (Cox & 
Oakes, 1984).

CONDITIONAl HAZARD ESTIMATING 
NEURAl NETWORKS

Neural Network Model

The neural network model we used is the Multi-Layer 
Perceptron (MLP) (Bishop, 1995): 
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where g() is a sigmoid function, and w={b0, v, u, u0, 
b} is the set of network parameters. The MLP output 
defines an analytical model for the logarithm of the 
hazard rate function:
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We refer to this continuous time model as Condition-
al Hazard Estimating Neural Network (CHENN).

Bayesian Learning of the Network 
Parameters

The Bayesian learning framework offers several 
advantages over maximum likelihood methods com-
monly used in neural network learning (Bishop, 1995), 
(MacKay, 1992), among which the most important are 
automatic regularization and estimation of error bars 
on predictions.

In the conventional maximum likelihood approach 
to training, a single weight vector is found, which 
minimizes the error function; in contrast, the Bayesian 
scheme considers a probability distribution over weights 
w. This is described by a prior distribution p(w) which 
is modified when we observe a dataset D. This process 
can be expressed by Bayes’  theorem:
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To evaluate the posterior distribution, we need 
expressions for the likelihood p(D|w) (which we have 
already shown) and for the prior p(w).

The prior over weights should reflect the knowledge, 
if any, we have about the mapping we want to build. 
In our case, we expect the function to be very smooth, 
so an appropriate prior might be:
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which is a multivariate normal density with zero mean and 
diagonal covariance matrix with elements  1/ k. In this 
way, weights centered on zero have higher probability, 
a fact which encourages very smooth functions.
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