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INTRODUCTION 

Artificial Neural Networks have proven, along the last 
four decades, to be an important tool for modelling of 
the functional structures of the nervous system, as well 
as for the modelling of non-linear and adaptive systems 
in general, both biological and non biological (Haykin, 
1999). They also became a powerful biologically 
inspired general computing framework, particularly 
important for solving non-linear problems with reduced 
formalization and structure. At the same time, methods 
from the area of complex systems and non-linear dy-
namics have shown to be useful in the understanding 
of phenomena in brain activity and nervous system 
activity in general (Freeman, 1992; Kelso, 1995). 
Joining these two areas, the development of artificial 
neural networks employing rich dynamics is a growing 
subject in both arenas, theory and practice. In particu-
lar, model neurons with rich bifurcation and chaotic 
dynamics have been developed in recent decades, for 
the modelling of complex phenomena in biology as 
well as for the application in neuro-like computing. 
Some models that deserve attention in this context are 
those developed by Kazuyuki Aihara (1990), Nagumo 
and Sato (1972), Walter Freeman (1992), K. Kaneko 
(2001), and Nabil Farhat (1994), among others. The 
following topics develop the subject of Chaotic Neural 
Networks, presenting several of the important models 
of this class and briefly discussing associated tools of 
analysis and typical target applications.

BACKGROUND 

Artificial Neural Networks (ANNs) is one of the impor-
tant frameworks for biologically inspired computing. 
A central characteristic in this paradigm is the desire 
to bring to computing models some of the interesting 
properties of the nervous system such as adaptation, 
robustness, non-linearity, and the learning through 
examples. 

When we focus on biology (real neural networks), 
we see that the signals generated in real neurons 
are used in different ways by the nervous system to 
code information, according to the context and the 
functionality (Freeman, 1992). Because of that, in ANNs 
we have distinct model neurons, such as models with 
graded activity based on frequency coding, models with 
binary outputs, and spiking models (or pulsed models), 
among others, each one giving emphasis to different 
aspects of neural coding and neural processing. Under 
this scenario, the role of neurodynamics is one of the 
target aspects in neural modelling and neuro-inspired 
computing; some model neurons include aspects of 
neurodynamics, which are mathematically represented 
through differential equations in continuous time, or 
difference equations in discrete time. As described in 
the following topic, dynamic phenomena happen at 
several levels in neural activity and neural assembly 
activity (in internal neural structures, in simple networks 
of interacting neurons, and in large populations of 
neurons). The model neurons particularly important for 
our discussion are those that emphasize the relationship 
between neurocomputing and non-linear dynamical 
systems with bifurcation and rich dynamic behaviour, 
including chaotic dynamics.

NEUROCOMPUTING AND THE ROLE 
OF RICH DyNAMICS

The presence of dynamics in neural functionality hap-
pens even at the more detailed cellular level: the well 
known Hodgkin and Huxley model for the generation 
and propagation of action potentials in the active mem-
brane of real neurons is an example; time dependent 
processes related to synaptic activity and the post 
synaptic signals is another example. Dynamics also 
appears when we consider the oscillatory behaviour in 
real neurons under consistent stimulation. Additionally, 
when we consider neural assemblies, we also observe 
the emergence of important global dynamic behaviour 
for the production of complex functions. 
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As discussed ahead, non-linearity is an essential 
ingredient for complex functionality and for complex 
dynamics; there is a clear contrast between linear 
dynamic systems and non-linear dynamic systems, in 
what respect their potential for the production of rich 
and diverse behaviour. 

Role of Non-Linear Dynamics in the 
Production of Rich Behaviour

In linear dynamical systems, both in continuous time 
and in discrete time, the autonomous dynamical behav-
iour is completely characterized through the system’s 
natural modes, either the harmonic oscillatory modes, 
or the exponentially decaying modes (in the theory 
of linear dynamical systems, these are represented by 
frequencies and complex frequencies). The possible 
dynamic outcomes in linear systems are thus limited 
to the universe of linear combinations of these natural 
modes. These modes can have their properties of ampli-
tudes and frequencies controlled through parameters of 
the system, but not their central properties such as the 
nature of the produced waveforms. Since the number 
of natural modes of linear systems is closely related 
to the number of state variables, we have that small 
networks (of linear dynamic elements) can produce 
only limited diversity of dynamical behaviour.  

The scenario becomes completely different in non-
linear systems. Non-linearity promotes rich dynamic 
behaviour, obtained by changing the stability and 
instability of different attractors. These changes give 
place to bifurcation phenomena (transitions between 
dynamic modalities with distinct characteristics) 
and therefore to diversity of dynamic behaviour. In 
non-linear systems, we can have a large diversity of 
dynamical behaviours, with the potential production 
of infinite number of distinct waveforms (or time 
series, for discrete time systems). This can happen for 
systems with very reduced number of state variables: 
just three in continuous time, or just one state variable 
in discrete time, are enough to allow bifurcation among 
different attractors and potential cascades of infinite 
bifurcations leading to chaos. In our context, this 
means obtaining rich attractor behaviour even from 
very simple neural networks (i.e., networks with a 
small number of neurons). 

In summary, the operation of chaotic neural 
networks explores the concepts of attractors, repellers, 
limit cycles, and stability (see the topic Terms and 

Definitions for details on these concepts) of trajectories 
in the multidimensional state space of the neural 
network, and more specifically, the dense production 
of destabilization of cyclic trajectories with cascading 
to chaotic behaviour. This scenario allows for the blend 
of ordered behaviour and chaotic dynamics, and the 
presence of fractal structure and self-similarity in the 
rich landscape of dynamic attractors.

MODEl NEURONS WITH RICH 
DyNAMICS, BIFURCATION AND CHAOS

We can look at chaotic elements that compose neuro-like 
architectures from several different perspectives. They 
can be looked at as emergent units with rich dynamics 
that are produced by the interaction of classical model 
neurons, such as the sigmoidal model neurons based 
on frequency coding (Haykin, 1999), or the integrate 
and fire spiking model neurons (Farhat, 1994). They 
can also correspond to the modelling of dynamical 
behaviour of neural assemblies, approached as a unity 
(Freeman, 1992). Finally, they can be tools for approxi-
mate representation of aspects of complex dynamics 
in the nervous system, paying attention mainly to the 
richness of attractors and blend of ordered and erratic 
dynamics, and not exactly to the details of the biological 
dynamics (DelMoral, 2005; Kaneko, 2001). Ahead we 
describe briefly some of the relevant model neurons in 
the context of chaotic neural networks. 

Aihara’s Chaotic Model Neuron. One important 
work in the context of chaotic neural networks is the 
model neuron proposed by Kazuyuki Aihara and col-
laborators (1990). In it, we have self-feedback of the 
neuron’s state variable, for representing the refrac-
tory period in real neurons. This makes possible rich 
bifurcation and cascading to chaos. His work extends 
previous models in which some elements of dynamics 
were already present. In particular, we have to men-
tion the work by Caianiello (1961), in which the past 
inputs have impact on the value of the present state of 
the neuron, and the work by Nagumo and Sato (1972), 
which incorporates an exponential decay memory. 
Aihara’s model included memory for the inputs of the 
model neuron as well as for its internal state. It also 
included continuous transfer functions, an essential 
ingredient for rich bifurcation, fractal structure and 
cascading to chaos. Equation 1 shows a simplified form 
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