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INTRODUCTION

Numerical methods commonly employed to convert 
experimental data into interpretable images and spectra 
commonly rely on straightforward transforms, such as 
the Fourier transform (FT), or quite elaborated emerg-
ing classes of transforms, like wavelets (Meyer, 1993; 
Mallat, 2000), wedgelets (Donoho, 1996), ridgelets 
(Candes, 1998), and so forth. Yet experimental data are 
incomplete and noisy due to the limiting constraints of 
digital data recording and the finite acquisition time. 
The pitfall of most transforms is that imperfect data 
are directly transferred into the transform domain along 
with the signals of interest. The traditional approach to 
data processing in the transform domain is to ignore any 
imperfections in data, set to zero any unmeasured data 
points, and then proceed as if data were perfect.

Contrarily, the maximum entropy (ME) principle 
needs to proceed from frequency domain to space (time) 
domain. The ME techniques are used in data analysis 
mostly to reconstruct positive distributions, such as im-
ages and spectra, from blurred, noisy, and/or corrupted 
data. The ME methods may be developed on axiomatic 
foundations based on the probability calculus that has a 
special status as the only internally consistent language 
of inference (Skilling 1989; Daniell 1994). Within its 
framework, positive distributions ought to be assigned 
probabilities derived from their entropy.

Bayesian statistics provides a unifying and self-
consistent framework for data modeling. Bayesian 
modeling deals naturally with uncertainty in data 
explained by marginalization in predictions of other 
variables. Data overfitting and poor generalization are 
alleviated by incorporating the principle of Occam’s 
razor, which controls model complexity and set the 
preference for simple models (MacKay, 1992). Bayes-
ian inference satisfies the likelihood principle (Berger, 
1985) in the sense that inferences depend only on the 
probabilities assigned to data that were measured and 
not on the properties of some admissible data that had 
never been acquired.

Artificial neural networks (ANNs) can be concep-
tualized as highly flexible multivariate regression and 
multiclass classification non-linear models. However, 
over-flexible ANNs may discover non-existent correla-
tions in data. Bayesian decision theory provides means 
to infer how flexible a model is warranted by data and 
suppresses the tendency to assess spurious structure in 
data. Any probabilistic treatment of images depends on 
the knowledge of the point spread function (PSF) of 
the imaging equipment, and the assumptions on noise, 
image statistics, and prior knowledge. Contrarily, the 
neural approach only requires relevant training exam-
ples where true scenes are known, irrespective of our 
inability or bias to express prior distributions. Trained 
ANNs are much faster image restoration means, espe-
cially in the case of strong implicit priors in the data, 
nonlinearity, and nonstationarity. The most remarkable 
work in Bayesian neural modeling was carried out by 
MacKay (1992, 2003) and Neal (1994, 1996), who 
theoretically set up the framework of Bayesian learning 
for adaptive models. 

BACKGROUND 

Bayesian approach to image restoration is based on the 
assumption that all of the relevant image information 
may be stated in probabilistic terms and prior probabili-
ties are known. The ME principle is optimally setting 
prior probabilities for positive additive distributions. 
Yet Bayes’ theorem and the ME principle share one 
common future: the updating of a state of knowledge. In 
some cases, running Bayes’ theorem in one hypothesis 
space and applying the ME principle in another lead 
to similar calculations.

Neuromorphic and Bayesian modeling may appar-
ently look like extremes of the data modeling spectrum. 
ANNs are non-linear parallel computational devices 
endowed with gradient descent algorithms trained by 
example to solve prediction and classification problems. 
In contrast, Bayesian statistics is based on coherent 
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inference and clear axioms. Yet both approaches aim to 
create models in agreement with data. Bayesian deci-
sion theory provides intrinsic means to model ranking. 
Bayesian inference for ANNs can be implemented nu-
merically by deterministic methods involving Gaussian 
approximations (MacKay, 1992), or by Monte-Carlo 
methods (Neal, 1996). Two features distinguish the 
Bayesian approach to learning models from data. First, 
beliefs derived from background knowledge are used to 
select a prior probability distribution for model param-
eters. Secondly, predictions of future observations are 
performed by integrating the model’s predictions with 
respect to the posterior parameter distribution obtained 
by updating this prior with new data. Both aspects are 
difficult in neural modeling: the prior over network 
parameters has no obvious relation to prior knowledge, 
and integration over the posterior is computationally 
demanding. The properties of priors can be elucidated 
by defining classes of prior distributions for net param-
eters that reach sensible limits as the net size goes to 
infinity (Neal, 1994). The problem of integrating over 
the posterior can be solved using Markov chain Monte 
Carlo (Neal 1996).

Bayesian Image Modeling

The fundamental concept of Bayesian analysis is that 

the plausibility of alternative hypotheses { }i iH
∈

 is 

represented by probabilities { }i iP
∈ , and inference is 

performed by evaluating these probabilities. Inference 
may opperate on various propositions related in neural 
modeling to different paradigms. Bayes’ theorem makes 
no reference to any sample or hypothesis space, neither 
it determines the numerical value of any probability 
directly from available information. As a prerequisite 
to apply Bayes’ theorem, a principle to cast available 
information into numerical values is needed.

In statistical restoration of gray-level digital im-
ages, the basic assumption is that there exists a scene 
adequately represented by an orderly array of N pixels. 
The task is to infer reliable statistical descriptions of im-
ages, which are gray-scale digitized pictures and stored 
as an array of integers representing the intensity of gray 
level in each pixel. Then the shape of any positive, ad-
ditive image can be directly identified with a probability 
distribution. The image is conceived as an outcome of 

a random vector { }1 2 Nf f f=f , , ..., , given in the form 

of a positive, additive probability density function. 

Likewise, the measured data { }1 2 Mg g g=g , , ...  are 
expressed in the form of a probability distribution (Fig. 
1). Further assumption refers to image data as a linear 
function of physical intensity, and that the errors (noise) 
b is data independent, additive, and Gaussian with zero 
mean and known standard deviation   1 2, , , ...,m m M=  
in each pixel. The concept of image entropy and the 
entropy alternative expressions used in image restora-
tion are discussed by Gull and Skilling (1985). A brief 
review of different approaches based on ME principle, 
as well as a full Bayesian approach for solving inverse 
problems are due to Djafari (1995).

Image models are derived on the basis of intui-
tive ideas and observations of real images, and have 
to comply with certain criteria of invariance, that is, 
operations on images should not affect their likelihood. 
Each model comprises a hypothesis H with some free 
parameters ( )w , , ...=  that assign a probability 

density ( )f | w,P H  over the entire image space and 
normalized to integrate to unity. Prior beliefs about the 
validity of H before data acquisition are embedded in 
P(H). Extreme choices for P(H) only may exceed the 

evidence ( )f |P H , thus the plausibility ( )| fP H  of 

H is given essentially by the evidence ( )f |P H  of the 
image f. Consequently, objective means for comparing 
various hypotheses exist.

Initially, the free parameters w are either unknown 
or they are assigned very wide prior distributions. The 
task is to search for the best fit parameter set wMP, which 
has the largest likelihood given the image. Following 
Bayes’ theorem:

( ) ( ) ( )
( )

f | w, w |
w | f,

f |
P H P H

P H
P H

⋅
=  (1)

where ( )f | w,P H  is the likelihood of the image f 
given w, ( )w |P H  is the prior distribution of w, and 

( )f |P H  is the evidence for H. A prior ( )w |P H  
has to be assigned quite subjectively based on our 

beliefs about images. Since ( )w | f,P H  is normal-
ized to 1, then the denominator in (1) ought to satisfy 

( ) ( ) ( )
w

f | f | w, w | wP H P H P H d= ⋅ ⋅∫ . The inte-
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