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INTRODUCTION

Since its seminal publication in 1988, the Cellular
Neural Network (CNN) (Chua & Yang, 1988) paradigm
have attracted research community’s attention, mainly
because of its ability for integrating complex comput-
ing processes into compact, real-time programmable
analogic VLSI circuits (Rodriguez et al., 2004).

Unlike cellular automata, the CNN model hosts
nonlinear processors which, from analogic array
inputs, in continuous time, generate analogic array
outputs using a simple, repetitive scheme controlled
by just a few real-valued parameters. CNN is the core
of the revolutionary Analogic Cellular Computer, a
programmable system whose structure is the so-called
CNN Universal Machine (CNN-UM) (Roska & Chua,
1993). Analogic CNN computers mimic the anatomy
and physiology of many sensory and processing organs
with the additional capability of data and program stor-
ing (Chua & Roska, 2002).

This article reviews the main features of this Artifi-
cial Neural Network (ANN) model and focuses on its
outstanding and more exploited engineering applica-
tion: Digital Image Processing (DIP).

BACKGROUND

In the following paragraphs, a definition of the param-
eters and structure of the CNN is performed in order to
clarify the practical usage of the model in DIP.

The standard CNN architecture consists of an M x
N rectangular array of cells C(i,7) with Cartesian coor-
dinates (i,j),i=1,2,...,M,j=1,2, ..., N. Eachcell or
neuron C(i,7) is bounded to a connected neighbourhood
or sphere of influence S (i,/) of positive integer radius
r, which is the set of all neighbouring cells satisfying
the following property:
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This set is sometimes referred as a (2r+1) x (2r+1)
neighbourhood, e.g., fora3 x 3 neighbourhood, »should
be 1. Thus, the parameter  controls the connectivity of
a cell, i.e. the number of active synapses that connects
the cell with its immediate neighbours.

When > N /2 and M = N, a fully connected CNN
is obtained, where every neuron is connected to every
other cell in the network and S (7,/) is the entire array.
This extreme case corresponds to the classic Hopfield
ANN model (Chua & Roska, 2002).

The state equation of any cell C(i,j) in the M x N
array structure of the standard CNN may be described
mathematically by:
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where C and R are values that control the transient
response of the neuron circuit (just like an RC filter,
typically set to unity for the sake of simplicity), / is
generally a constant value that biases or thresholds the
state matrix Z= {z }, and S, is the local neighbourhood
of cell C(7, j) defined in (1), which controls the influ-
ence of the input data X = {x}.j} and the network output
Y= {V,-j} for time ¢.

This means that both input and output planes in-
teract with the state of a cell through the definition
of a set of real-valued weights, A(i, j; k, /) and B(i, J;
k, 1), whose size is determined by the neighbourhood
radius 7. The matrices or cloning templates 4 and B
are called the feedback and feed-forward (or control)
operators, respectively.

A standard CNN is typically defined with constant
values for r, 1, 4 and B, thus implying that for a fixed
input image X, a neuron C(i, j) is provided for each
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pixel (7, j), with constant weighted circuits defined by
the feedback template 4 that connects the cell with the
output plane Y, and by the control template B, which
connects the neuron to the neighbouring pixels of
input x, € X. The value of the neuron state z, is then
adjusted with the bias parameter /, and passed as input
to a piecewise-linear function in order to determine the
output value Yy This function may be expressed as

o GICR BENGRY) 3)

In the Image Processing context, a grey-scale
image input X can be represented pixel-wise using a
linear map between a pixel value (e.g. a 8-bit integer
luminance matrix with 256 grey-scale levels) and the
CNN input interval [-1, +1], where the lower limit is
used to implement full luminance (i.e. white) and the
upper for black pixels (Chua & Yang, 1988).

BASIC CNN IMAGE PROCESSING

The main application of the CNN model, due to its
convolution-like scheme, has been DIP modelling and
design. In the next subsections a number of basic DIP
approaches are introduced, underlining the importance
of the network parameters by giving illustrative ex-
amples ofapplication. Starting from the standard model
described in the previous section, the definition of the
standard isotropic CNN follows. Then, an example of
application in logic DIP processing is performed in
order to introduce the nonlinear effects that implies
the using a non-zero feedback template.

The Isotropic CNN Model

For a still image, X will be invariant with time, and
for video, X = X(#). In the most general case, r, 4, B
and / may vary with position and time, and the cloning
templates are defined as nonlinear, with the possibility
of integrating inhibitory signals for the state matrix
and even nonlinear templates that interact with mixed
input-output-state data (Chua & Roska, 2002).

These possible extensions raise the definition of a
special (and simpler) class of CNN, called isotropic
or space-invariant, in which r, 4, B and [ are fixed for
the whole network and where linear synaptic operators
are utilized.

In other words,
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The vast majority of the templates defined in the
template compendium of (Chua & Roska, 2002) for the
CNN-UM are based on this isotropic scheme, using r
=1, and binary images in the input plane.

If no feedback (i.e. 4 = 0) is used, then the CNN
behaves as a convolution network, using B as a spatial
filter, / as a threshold and the piecewise linear output
(3) as a limiter or saturated output filter. In this way,
virtually any spatial filter from DIP theory (Jain, 1989)
can be implemented on such a feed-forward driven
CNN, which ensures its output stability.

For instance, the EDGE template defined by

T
A=0,B,  =-1 8 ~—1|,1=-1
S R R )

is designed to work correctly for binary inputs, giving
black (+1) output pixels in the input locations where a
black edge pixel exists (i.e. if a black pixel has 1 white
neighbour), and white (-1) pixels elsewhere.

However, when a grey-scale input image is fed to
this CNN, the output may not be a binary image. To
solve this potential problem, the following modification
is performed over the EDGE CNN:

A=2,B=B,,..1=-0.5 (6)

The definition of a centre feedback absolute value
greater than 1 in (6) ensures a binary output and thus
output network stability. The B template used in these
CNN is of the Laplacian type, having the important
property thatall surrounding input synaptic weights are
inhibitory (i.e. negative) and identical, but the centre
synaptic weight is excitatory, and the average of all
input synaptic weights is zero.
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