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INTRODUCTION

Since its seminal publication in 1988, the Cellular 
Neural Network (CNN) (Chua & Yang, 1988) paradigm 
have attracted research community’s attention, mainly 
because of its ability for integrating complex comput-
ing processes into compact, real-time programmable 
analogic VLSI circuits (Rodríguez et al., 2004).

Unlike cellular automata, the CNN model hosts 
nonlinear processors which, from analogic array 
inputs, in continuous time, generate analogic array 
outputs using a simple, repetitive scheme controlled 
by just a few real-valued parameters. CNN is the core 
of the revolutionary Analogic Cellular Computer, a 
programmable system whose structure is the so-called 
CNN Universal Machine (CNN-UM) (Roska & Chua, 
1993). Analogic CNN computers mimic the anatomy 
and physiology of many sensory and processing organs 
with the additional capability of data and program stor-
ing (Chua & Roska, 2002).

This article reviews the main features of this Artifi-
cial Neural Network (ANN) model and focuses on its 
outstanding and more exploited engineering applica-
tion: Digital Image Processing (DIP).

BACKGROUND

In the following paragraphs, a definition of the param-
eters and structure of the CNN is performed in order to 
clarify the practical usage of the model in DIP.

The standard CNN architecture consists of an M × 
N rectangular array of cells C(i,j) with Cartesian coor-
dinates (i,j), i = 1, 2, …, M, j = 1, 2, …, N. Each cell or 
neuron C(i,j) is bounded to a connected neighbourhood 
or sphere of influence Sr(i,j) of positive integer radius 
r, which is the set of all neighbouring cells satisfying 
the following property:
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This set is sometimes referred as a (2r +1) × (2r +1) 
neighbourhood, e.g., for a 3 × 3 neighbourhood, r should 
be 1. Thus, the parameter r controls the connectivity of 
a cell, i.e. the number of active synapses that connects 
the cell with its immediate neighbours.

When r > N /2 and M = N, a fully connected CNN 
is obtained, where every neuron is connected to every 
other cell in the network and Sr(i,j) is the entire array. 
This extreme case corresponds to the classic Hopfield 
ANN model (Chua & Roska, 2002).

The state equation of any cell C(i,j) in the M × N 
array structure of the standard CNN may be described 
mathematically by:

[ ]
( , ) ( , )

( ) 1 ( ) ( , ; , ) ( ) ( , ; , )
r

ij
ij kl kl ij

C k l S i j

dz t
C z t A i j k l y t B i j k l x I

dt R ∈

= − + ⋅ + ⋅ +∑

      (2)

where C and R are values that control the transient 
response of the neuron circuit (just like an RC filter, 
typically set to unity for the sake of simplicity), I is 
generally a constant value that biases or thresholds the 
state matrix Z = {zij}, and Sr is the local neighbourhood 
of cell C(i, j) defined in (1), which controls the influ-
ence of the input data X = {xij} and the network output 
Y = {yij} for time t.

This means that both input and output planes in-
teract with the state of a cell through the definition 
of a set of real-valued weights, A(i, j; k, l) and B(i, j; 
k, l), whose size is determined by the neighbourhood 
radius r. The matrices or cloning templates A and B 
are called the feedback and feed-forward (or control) 
operators, respectively.

A standard CNN is typically defined with constant 
values for r, I, A and B, thus implying that for a fixed 
input image X, a neuron C(i, j) is provided for each 
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B
pixel (i, j), with constant weighted circuits defined by 
the feedback template A that connects the cell with the 
output plane Y, and by the control template B, which 
connects the neuron to the neighbouring pixels of 
input xij ∈ X. The value of the neuron state zij is then 
adjusted with the bias parameter I, and passed as input 
to a piecewise-linear function in order to determine the 
output value yij. This function may be expressed as
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In the Image Processing context, a grey-scale 
image input X can be represented pixel-wise using a 
linear map between a pixel value (e.g. a 8-bit integer 
luminance matrix with 256 grey-scale levels) and the 
CNN input interval [–1, +1], where the lower limit is 
used to implement full luminance (i.e. white) and the 
upper for black pixels (Chua & Yang, 1988).

BASIC CNN IMAGE PROCESSING

The main application of the CNN model, due to its 
convolution-like scheme, has been DIP modelling and 
design. In the next subsections a number of basic DIP 
approaches are introduced, underlining the importance 
of the network parameters by giving illustrative ex-
amples of application. Starting from the standard model 
described in the previous section, the definition of the 
standard isotropic CNN follows. Then, an example of 
application in logic DIP processing is performed in 
order to introduce the nonlinear effects that implies 
the using a non-zero feedback template.

The Isotropic CNN Model

For a still image, X will be invariant with time, and 
for video, X = X(t). In the most general case, r, A, B 
and I may vary with position and time, and the cloning 
templates are defined as nonlinear, with the possibility 
of integrating inhibitory signals for the state matrix 
and even nonlinear templates that interact with mixed 
input-output-state data (Chua & Roska, 2002).

These possible extensions raise the definition of a 
special (and simpler) class of CNN, called isotropic 
or space-invariant, in which r, A, B and I are fixed for 
the whole network and where linear synaptic operators 
are utilized.

In other words,
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and Iij = I.    (4)

The vast majority of the templates defined in the 
template compendium of (Chua & Roska, 2002) for the 
CNN-UM are based on this isotropic scheme, using r 
= 1, and binary images in the input plane. 

If no feedback (i.e. A = 0) is used, then the CNN 
behaves as a convolution network, using B as a spatial 
filter, I as a threshold and the piecewise linear output 
(3) as a limiter or saturated output filter. In this way, 
virtually any spatial filter from DIP theory (Jain, 1989) 
can be implemented on such a feed-forward driven 
CNN, which ensures its output stability. 

For instance, the EDGE template defined by

A = 0, 
1 1 1
1 8 1
1 1 1

EDGEB
− − − 

 = − − 
 − − − 

, I = –1
      (5)

is designed to work correctly for binary inputs, giving 
black (+1) output pixels in the input locations where a 
black edge pixel exists (i.e. if a black pixel has 1 white 
neighbour), and white (–1) pixels elsewhere. 

However, when a grey-scale input image is fed to 
this CNN, the output may not be a binary image. To 
solve this potential problem, the following modification 
is performed over the EDGE CNN:

A = 2, B = BEDGE, I = –0.5  (6)

The definition of a centre feedback absolute value 
greater than 1 in (6) ensures a binary output and thus 
output network stability. The B template used in these 
CNN is of the Laplacian type, having the important 
property that all surrounding input synaptic weights are 
inhibitory (i.e. negative) and identical, but the centre 
synaptic weight is excitatory, and the average of all 
input synaptic weights is zero. 
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