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INTRODUCTION

Breakwaters are coastal structures constructed to shelter 
a harbour basin from waves. There are two main types: 
rubble-mound breakwaters, consisting of various layers 
of stones or concrete pieces of different sizes (weights), 
making up a porous mound; and vertical breakwaters, 
impermeable and monolythic, habitually composed of 
concrete caissons. This article deals with rubble-mound 
breakwaters. 

A typical rubble-mound breakwater consists of an 
armour layer, a filter layer and a core. For the breakwater 
to be stable, the armour layer units (stones or concrete 
pieces) must not be removed by wave action. Stability 
is basically achieved by weight. Certain types of con-
crete pieces are capable of achieving a high degree of 
interlocking, which contributes to stability by impeding 
the removal of a single unit.

The forces that an armour unit must withstand un-
der wave action depend on the hydrodynamics on the 
breakwater slope, which are extremely complex due 
to wave breaking and the porous nature of the struc-
ture. A detailed description of the flow has not been 
achieved until now, and it is unclear whether it will 
be in the future in view of the turbulent phenomena 
involved. Therefore the instantaneous force exerted 
on an armour unit is not, at least for the time being, 
amenable to determination by means of a numerical 
model of the flow. For this reason, empirical formu-
lations are used in rubble-mound design, calibrated 
on the basis of laboratory tests of model structures. 
However, these formulations cannot take into account 

all the aspects affecting the stability, mainly because 
the inherent complexity of the problem does not lend 
itself to a simple treatment. Consequently the empirical 
formulations are used as a predesign tool, and physical 
model tests in a wave flume of the particular design in 
question under the pertinent sea climate conditions are 
de rigueur, except for minor structures. The physical 
model tests naturally integrate all the complexity of the 
problem. Their drawback lies in that they are expensive 
and time consuming.

In this article, Artificial Neural Networks are trained 
and tested with the results of stability tests carried out 
on a model breakwater. They are shown to reproduce 
very closely the behaviour of the physical model in 
the wave flume. Thus an ANN model, if trained and 
tested with sufficient data, may be used in lieu of the 
physical model tests. A virtual laboratory of this kind 
will save time and money with respect to the conven-
tional procedure.

BACKGROUND

Artificial Neural Networks have been used in civil 
engineering applications for some time, especially in 
Hydrology (Ranjithan et al., 1993; Fernando and Jay-
awardena, 1998; Govindaraju and Rao, 2000; Maier 
and Dandy, 2000; Dawson and Wilby, 2001; Cigizoglu, 
2004); some Ocean Engineering issues have also been 
tackled (Mase et al., 1995; Tsai et al., 2002; Lee and 
Jeng, 2002; Medina et al., 2003; Kim and Park, 2005; 
Yagci et al., 2005). Rubble-mound breakwater stabil-
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ity is studied in Mase et al.’s (1995) pioneering work, 
focusing on a particular stability formula. Medina et 
al. (2003) train and test an Artificial Neural Network 
with stability data from six laboratories. The inputs 
are the relative wave height, the Iribarren number and 
a variable representing the laboratory. Kim and Park 
(2005) compare different ANN models on an analysis 
revolving around one empirical stability formula, as did 
Mase et al.’s (1995). Yagci et al. (2005) apply different 
kinds of neural networks and fuzzy logic, characterising 
the waves by their height, period and steepness. 

PHySICAL MODEL AND ANN MODEL

The Artificial Neural Networks were trained and tested 
on the basis of laboratory tests carried out in a wave 
flume of the CITEEC Laboratory, University of La 
Coruña. The flume section is 4 m wide and 0.8 m high, 
with a length of 33 m (Figure 1). Waves are generated 
by means of a piston-type paddle, controlled by an 
Active Absorption System (AWACS) which ensures 
that the waves reflected by the model are absorbed at 
the paddle.

The model represents a typical three-layer rubble-
mound breakwater in 15 m of water, crowned at +9.00 
m, at a 1:30 scale. Its slopes are 1:1.50 and 1:1.25 

on the seaward and leeward sides, respectively.  The 
armour layer consists in turn of two layers of stones 
with a weight W=69 g ±10%; those in the upper layer 
are painted in blue, red and black following horizontal 
bands, while those in the lower layer are painted in 
white, in order to easily identify after a test the dam-
aged areas, i.e., the areas where the upper layer has 
been removed. The filter layer is made up of a gravel 
with a median size D50 = 15.11 mm and a thickness of 
4 cm. Finally, the core consists of a finer gravel, with 
D50 = 6.95 mm, D15 = 5.45 mm, and D85 = 8.73 mm, 
and a porosity n = 42%. The density of the stones and 
gravel is γr = 2700 kg/m3.

Waves were measured at six different stations along 
the longitudinal, or x-axis, of the flume. With the origin 
of x located at the rest position of the wave paddle, the 
first wave gauge, S1, was located at x=7.98 m. A group 
of three sensors, S2, S3 and S4, was used to separate 
the incident and the reflected waves. The central wave 
gauge, S3, was placed at x=12.28 m, while the position 
of the others, S2 and S4, was varied according to the 
wave generation period of each test (Table 1). Another 
wave gauge, S5, was located 25 cm in front of the model 
breakwater toe, at x=13.47 m, and 16 cm to the right 
(as seen from the wave paddle) of the flume centreline, 
so as not to interfere with the video recording of the 

Figure 1. Experimental set-up

Table 1. Relative water depth (kh), wave period (T), and separation between sensors S2, S3 and S4 in the stabil-
ity tests

Test key kh T (s) S2-S3 (cm) S3-S4 (cm)

T10, T20 0.98 1.65 35 55

T11, T21 1.36 1.3 20 30

T12, T22 1.68 1.13 20 30

T13, T23 1.97 1.03 20 30
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