
���

AANN Development with EC Tools:
An Overview
Daniel Rivero
University of A Coruña, Spain

Juan Rabuñal
University of A Coruña, Spain

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Among all of the Artificial Intelligence techniques,
Artificial Neural Networks (ANNs) have shown to be a
very powerful tool (McCulloch & Pitts, 1943) (Haykin,
1999). This technique is very versatile and therefore has
been succesfully applied to many different disciplines
(classification, clustering, regression, modellization,
etc.) (Rabuñal & Dorado, 2005).

However, one of the greatest problems when using
ANNs is the great manual effort that has to be done in
their development. A big myth of ANNs is that they
are easy to work with and their development is almost
automatically done. This development process can be
divided into two parts: architecture development and
training and validation. As the network architecture is
problem-dependant, the design process of this architec-
ture used to be manually performed, meaning that the
expert had to test different architectures and train them
until finding the one that achieved best results after the
training process. The manual nature of the described
process determines its slow performance although the
training part is completely automated due to the exis-
tence of several algorithms that perform this part.

With the creation of Evolutionary Computation
(EC) tools, researchers have worked on the application
of these techniques to the development of algorithms
for automatically creating and training ANNs so the
whole process (or, at least, a great part of it) can be
automatically performed by computers and therefore
few human efforts has to be done in this process.

BACKGROUND

EC is a set of tools based on the imitation of the natural
behaviour of the living beings for solving optimization
problems. One of the most typical subset of tools inside

EC is called Evolutionary Algorithms (EAs), which are
based on natural evolution and its implementation on
computers. All of these tools work with the same basis:
a population of solutions to that particular problem is
randomly created and an evolutionary process is applied
to it. From this initial random population, the evolution is
done by means of selection and combination of the best
individuals (although the worst ones also have a small
probability of being chosen) to create new solutions.
This process is carried out by selection, crossover, and
mutation operators. These operators are typically used
in biology in its evolution for adaptation and survival.
After several generations, it is hoped that the population
contains a good solution to the problem.

The first EA to appear was Genetic Algorithms
(GAs), in 1975 (Holland, 1975). With the working
explained above, GAs use a binary codification (i.e.,
each solution is codified into a string of bits). Later, in
the early 90s a new technique appeared, called Genetic
Programming (GP). This one is based ob the evolution
of trees, i.e., each individual is codified as a tree instead
of a binary string. This allows its application to a wider
set of environments.

Although GAs and GP are the two most used tech-
niques in EAs, more tools can be classified as part
of this world, such as Evolutionary Programming or
Evolution Strategies, all of them with the same basis:
the evolution of a population following the natural
evolution rules.

DEVELOPMENT OF ANNS WITH EC
TOOLS

The development of ANNs is a topic that has been
extensively dealt with very diverse techniques. The
world of evolutionary algorithms is not an exception,
and proof of that is the great amount of works that have

���

ANN Development with EC Tools

been published about different techniques in this area
(Cantú-Paz & Kamath, 2005). These techniques follow
the general strategy of an evolutionary algorithm: an
initial population consisting of different genotypes, each
one of them codifying different parameters (typically,
the weight of the connections and / or the architecture
of the network and / or the learning rules), and is ran-
domly created. This population is evaluated in order to
determine the fitness of each individual. Afterwards,
this population is repeatedly made to evolve by means
of different genetic operators (replication, crossover,
mutation, etc.) until a determined termination criteria
is fulfilled (for example, a sufficiently good individual
is obtained, or a predetermined maximum number of
generations is achieved).

Essentially, the ANN generation process by means
of evolutionary algorithms is divided into three main
groups: evolution of the weights, architectures, and
learning rules.

Evolution of Weights

The evolution of the weights begins with a network with
a predetermined topology. In this case, the problem is to
establish, by means of training, the values of the network
connection weights. This is generally conceived as a
problem of minimization of the network error, taken,
for example, as the result of the Mean Square Error of
the network between the desired outputs and the ones
achieved by the network. Most the training algorithms,
such as the backpropagation algorithm (BP) (Rumel-
hart, Hinton & Williams, 1986), are based on gradient
minimization. This has several drawbacks (Whitley,
Starkweather & Bogart, 1990), the most important is
that quite frequently the algorithm becomes stuck in
a local minimum of the error function and is unable
of finding the global minimum, especially if the error
function is multimodal and / or non-differentiable.
One way of overcoming these problems is to carry out
the training by means of an Evolutionary Algorithm
(Whitley, Starkweather & Bogart, 1990); i.e., formulate
the training process as the evolution of the weights in
an environment defined by the network architecture
and the task to be done (the problem to be solved).
In these cases, the weights can be represented in the
individuals’ genetic material as a string of binary values
(Whitley, Starkweather & Bogart, 1990) or a string of
real numbers (Greenwood, 1997). Traditional genetic
algorithms (Holland, 1975) use a genotypic codification

method with the shape of binary strings. In this way,
much work has emerged that codifies the values of the
weights by means of a concatenation of the binary values
which represent them (Whitley, Starkweather & Bogart,
1990). The big advantage of these approximations is
their generality and that they are very simple to apply,
i.e., it is very easy and quick to apply the operators of
uniform crossover and mutation on a binary string.
The disadvantage of using this type of codification is
the problem of permutation. This problem was raised
upon considering that the order in which the weights
are taken in the string causes equivalent networks to
possibly correspond with totally different individuals.
This leads the crossing operator to become very inef-
ficient. Logically, the weight value codification has
also emerged in the form of real number concatenation,
each one of them associated with a determined weight
(Greenwood 1997). By means of genetic operators
designed to work with this type of codification, and
given that the existing ones for bit string cannot be
used here, several studies (Montana & Davis, 1989)
showed that this type of codification produces better
results and with more efficiency and scalability than
the BP algorithm.

Evolution of the Architectures

The evolution of the architectures includes the genera-
tion of the topological structure; i.e., the topology and
connectivity of the neurons, and the transfer function
of each neuron of the network. The architecture of a
network has a great importance in order to success-
fully apply the ANNs, as the architecture has a very
significant impact on the process capacity of the net-
work. In this way, on one hand, a network with few
connections and a lineal transfer function may not be
able to resolve a problem that another network hav-
ing other characteristics (distinct number of neurons,
connections or types of functions) would be able to
resolve. On the other hand, a network having a high
number of non-lineal connections and nodes could be
overfitted and learn the noise which is present in the
training as an inherent part of it, without being able to
discriminate between them, and in the end, not have a
good generalization capacity. Therefore, the design of
a network is crucial, and this task is classically carried
out by human experts using their own experience, based
on “trial and error”, experimenting with a different set
of architectures. The evolution of architectures has

4 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage: www.igi-

global.com/chapter/ann-development-tools/10236

Related Content

Machine Learning: A Revolution in Accounting
Mohamed Ali Bejjarand Yosr Siala (2024). Artificial Intelligence Approaches to Sustainable Accounting (pp.

110-134).

www.irma-international.org/chapter/machine-learning/343356

Towards a New Model for Causal Reasoning in Expert Systems
M. Keith Wright (2018). Intelligent Systems: Concepts, Methodologies, Tools, and Applications (pp. 89-122).

www.irma-international.org/chapter/towards-a-new-model-for-causal-reasoning-in-expert-systems/205781

Correlation and Analysis of Overlapping Leukocytes in Blood Cell Images Using Intracellular

Markers and Colocalization Operation
Balanagireddy G., Ananthajothi K., Ganesh Babu T. R.and Sudha V. (2021). AI Innovation in Medical Imaging

Diagnostics (pp. 137-154).

www.irma-international.org/chapter/correlation-and-analysis-of-overlapping-leukocytes-in-blood-cell-images-using-

intracellular-markers-and-colocalization-operation/271751

Dual Hesitant Fuzzy Soft Rings
V. Deepa (2018). International Journal of Fuzzy System Applications (pp. 1-16).

www.irma-international.org/article/dual-hesitant-fuzzy-soft-rings/208625

An Agent-Based Approach to Process Management in E-Learning Environments
Hokyin Lai, Minhong Wang, Jingwen Heand Huaiqing Wang (2008). International Journal of Intelligent

Information Technologies (pp. 18-30).

www.irma-international.org/article/agent-based-approach-process-management/2441

http://www.igi-global.com/chapter/ann-development-tools/10236
http://www.igi-global.com/chapter/ann-development-tools/10236
http://www.irma-international.org/chapter/machine-learning/343356
http://www.irma-international.org/chapter/towards-a-new-model-for-causal-reasoning-in-expert-systems/205781
http://www.irma-international.org/chapter/correlation-and-analysis-of-overlapping-leukocytes-in-blood-cell-images-using-intracellular-markers-and-colocalization-operation/271751
http://www.irma-international.org/chapter/correlation-and-analysis-of-overlapping-leukocytes-in-blood-cell-images-using-intracellular-markers-and-colocalization-operation/271751
http://www.irma-international.org/article/dual-hesitant-fuzzy-soft-rings/208625
http://www.irma-international.org/article/agent-based-approach-process-management/2441

