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INTRODUCTION

Among all of the Artificial Intelligence techniques, 
Artificial Neural Networks (ANNs) have shown to be a 
very powerful tool (McCulloch & Pitts, 1943) (Haykin, 
1999). This technique is very versatile and therefore has 
been succesfully applied to many different disciplines 
(classification, clustering, regression, modellization, 
etc.) (Rabuñal & Dorado, 2005).

However, one of the greatest problems when using 
ANNs is the great manual effort that has to be done in 
their development. A big myth of ANNs is that they 
are easy to work with and their development is almost 
automatically done. This development process can be 
divided into two parts: architecture development and 
training and validation. As the network architecture is 
problem-dependant, the design process of this architec-
ture used to be manually performed, meaning that the 
expert had to test different architectures and train them 
until finding the one that achieved best results after the 
training process. The manual nature of the described 
process determines its slow performance although the 
training part is completely automated due to the exis-
tence of several algorithms that perform this part.

With the creation of Evolutionary Computation 
(EC) tools, researchers have worked on the application 
of these techniques to the development of algorithms 
for automatically creating and training ANNs so the 
whole process (or, at least, a great part of it) can be 
automatically performed by computers and therefore 
few human efforts has to be done in this process.

BACKGROUND

EC is a set of tools based on the imitation of the natural 
behaviour of the living beings for solving optimization 
problems. One of the most typical subset of tools inside 

EC is called Evolutionary Algorithms (EAs), which are 
based on natural evolution and its implementation on 
computers. All of these tools work with the same basis: 
a population of solutions to that particular problem is 
randomly created and an evolutionary process is applied 
to it. From this initial random population, the evolution is 
done by means of selection and combination of the best 
individuals (although the worst ones also have a small 
probability of being chosen) to create new solutions. 
This process is carried out by selection, crossover, and 
mutation operators. These operators are typically used 
in biology in its evolution for adaptation and survival. 
After several generations, it is hoped that the population 
contains a good solution to the problem.

The first EA to appear was Genetic Algorithms 
(GAs), in 1975 (Holland, 1975). With the working 
explained above, GAs use a binary codification (i.e., 
each solution is codified into a string of bits). Later, in 
the early 90s a new technique appeared, called Genetic 
Programming (GP). This one is based ob the evolution 
of trees, i.e., each individual is codified as a tree instead 
of a binary string. This allows its application to a wider 
set of environments.

Although GAs and GP are the two most used tech-
niques in EAs, more tools can be classified as part 
of this world, such as Evolutionary Programming or 
Evolution Strategies, all of them with the same basis: 
the evolution of a population following the natural 
evolution rules.

DEVELOPMENT OF ANNS WITH EC 
TOOLS

The development of ANNs is a topic that has been 
extensively dealt with very diverse techniques. The 
world of evolutionary algorithms is not an exception, 
and proof of that is the great amount of works that have 
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been published about different techniques in this area 
(Cantú-Paz & Kamath, 2005). These techniques follow 
the general strategy of an evolutionary algorithm: an 
initial population consisting of different genotypes, each 
one of them codifying different parameters (typically, 
the weight of the connections and / or the architecture 
of the network and / or the learning rules), and is ran-
domly created. This population is evaluated in order to 
determine the fitness of each individual. Afterwards, 
this population is repeatedly made to evolve by means 
of different genetic operators (replication, crossover, 
mutation, etc.) until a determined termination criteria 
is fulfilled (for example, a sufficiently good individual 
is obtained, or a predetermined maximum number of 
generations is achieved).

Essentially, the ANN generation process by means 
of evolutionary algorithms is divided into three main 
groups: evolution of the weights, architectures, and 
learning rules.

Evolution of Weights

The evolution of the weights begins with a network with 
a predetermined topology.  In this case, the problem is to 
establish, by means of training, the values of the network 
connection weights. This is generally conceived as a 
problem of minimization of the network error, taken, 
for example, as the result of the Mean Square Error of 
the network between the desired outputs and the ones 
achieved by the network. Most the training algorithms, 
such as the backpropagation algorithm (BP) (Rumel-
hart, Hinton & Williams, 1986), are based on gradient 
minimization. This has several drawbacks (Whitley, 
Starkweather & Bogart, 1990), the most important is 
that quite frequently the algorithm becomes stuck in 
a local minimum of the error function and is unable 
of finding the global minimum, especially if the error 
function is multimodal and / or non-differentiable. 
One way of overcoming these problems is to carry out 
the training by means of an Evolutionary Algorithm 
(Whitley, Starkweather & Bogart, 1990); i.e., formulate 
the training process as the evolution of the weights in 
an environment defined by the network architecture 
and the task to be done (the problem to be solved). 
In these cases, the weights can be represented in the 
individuals’ genetic material as a string of binary values 
(Whitley, Starkweather & Bogart, 1990) or a string of 
real numbers (Greenwood, 1997). Traditional genetic 
algorithms (Holland, 1975) use a genotypic codification 

method with the shape of binary strings. In this way, 
much work has emerged that codifies the values of the 
weights by means of a concatenation of the binary values 
which represent them (Whitley, Starkweather & Bogart, 
1990). The big advantage of these approximations is 
their generality and that they are very simple to apply, 
i.e., it is very easy and quick to apply the operators of 
uniform crossover and mutation on a binary string. 
The disadvantage of using this type of codification is 
the problem of permutation. This problem was raised 
upon considering that the order in which the weights 
are taken in the string causes equivalent networks to 
possibly correspond with totally different individuals. 
This leads the crossing operator to become very inef-
ficient. Logically, the weight value codification has 
also emerged in the form of real number concatenation, 
each one of them associated with a determined weight 
(Greenwood 1997). By means of genetic operators 
designed to work with this type of codification, and 
given that the existing ones for bit string cannot be 
used here, several studies (Montana & Davis, 1989) 
showed that this type of codification produces better 
results and with more efficiency and scalability than 
the BP algorithm.

Evolution of the Architectures

The evolution of the architectures includes the genera-
tion of the topological structure; i.e., the topology and 
connectivity of the neurons, and the transfer function 
of each neuron of the network. The architecture of a 
network has a great importance in order to success-
fully apply the ANNs, as the architecture has a very 
significant impact on the process capacity of the net-
work. In this way, on one hand, a network with few 
connections and a lineal transfer function may not be 
able to resolve a problem that another network hav-
ing other characteristics (distinct number of neurons, 
connections or types of functions) would be able to 
resolve. On the other hand, a network having a high 
number of non-lineal connections and nodes could be 
overfitted and learn the noise which is present in the 
training as an inherent part of it, without being able to 
discriminate between them, and in the end, not have a 
good generalization capacity. Therefore, the design of 
a network is crucial, and this task is classically carried 
out by human experts using their own experience, based 
on “trial and error”, experimenting with a different set 
of architectures. The evolution of architectures has 
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