
431

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 22

DOI: 10.4018/978-1-4666-5800-4.ch022

Incorporating Free/Open-
Source Data and Tools in

Software Engineering Education

ABSTRACT

Software development is a fast-changing area. New methods and new technologies emerge all the time.
As a result, the education of software engineering is generally considered not to be keeping pace with
the development of software engineering in industry. Given the limited resources in academia, it is unre-
alistic to purchase all the latest software tools for classroom usage. In this chapter, the authors describe
how free/open-source data and free/open-source tools are used in an upper-level software engineering
class at Indiana University South Bend. Depending on different learning objectives, different free/open-
source tools and free/open-source data are incorporated into different team projects. The approach
has been applied for two semesters, where instructor’s experiences are assembled and analyzed. The
study suggests (1) incorporating both free/open-source tools and free/open-source data in a software
engineering course so that students can better understand both development methods and development
processes and (2) updating software engineering course regularly in order to keep up with the advance
of development tools and development methods in industry.

Liguo Yu
Indiana University South Bend, USA

David R. Surma
Indiana University South Bend, USA

Hossein Hakimzadeh
Indiana University South Bend, USA

432

Incorporating Free/Open-Source Data and Tools

1. INTRODUCTION

Software engineering is considered one of the
most difficult topics in computer science program.
Its difficulty is not like theory courses, such as
algorithm analysis, nor programming courses,
such as data structures. Software engineering is an
empirical course. Students should learn software
engineering methods through hands-on experi-
ence, which might include real-world software
development, real-world customer interaction,
real-world planning and estimation, and real-world
decision-making and problem-solving.

However, given the limited resources in aca-
demia, it is hard for students to learn hands-on
experience in a classroom environment. Software
engineering educators have been working on this
issue for years and various approaches have been
adopted to overcome this hurdle. For example, in
some programs, industry projects are introduced
into the classroom (Hayes, 2002), where students
practice software engineering principles through
solving challenging and complicated real world-
problems. In other programs, students are asked to
participate in open-source software development
(Lundell et al., 2007; Stamelos, 2008; Jaccheri &
Osterlie, 2007), where the source code is available
for analyzing and testing. In some cases, students
could be assigned to tackle a reported bug. For
example, Papadopoulos et al. (2012; 2013) have
used free/libre open source software (FLOSS)
projects to assist teaching software engineering
for at least four years. Their experiences are well
documented and analyzed.

The two methods described above are proven
approaches that can better integrate software
engineering education with software industry
practices. They all can be classified as real-world
project-based software engineering education.

The software engineering course offered at
Indiana University South Bend is tool and data
based, where students learn software engineer-
ing methods through using software tools and
analyzing software data, more specifically, free/

open-source tools and free/open-source data. In
this chapter, we describe how free/open-source
tools and free/open-source data could be used
in software engineering education to reduce the
gap between industry expectations and what the
academia can deliver.

The remaining of the chapter is organized as
follows. In Section 2, we review related work and
introduce our teaching approach. In Section 3, we
describe our software engineering class, including
the teaching method and the teaching experience.
In Section 4, we summarize the analysis of our
teaching approach. Conclusions and the improve-
ment plan are presented in Section 5.

2. RELATED WORK AND OUR
TEACHING APPROACH

Open-source software has been widely used in
education (Lazic et al., 2011; Hoeppner & Boag,
2011), especially in computer science educa-
tion. In software engineering field, open-source
software has special usages. Because nowadays,
software development largely depends on tools,
which are computer software program that can
facilitate the analysis, design, implementation,
testing, and project management in software de-
velopment. In other words, to be considered as a
modern software engineer, one must know how
to use various CASE (computer aided software
engineering) tools.

Given the limited resources in academia, it is
unrealistic to purchase all the latest commercial
development tools for classroom usage. Therefore,
open-source tools provide an opportunity for
students to explore the latest technology devel-
opment in software industry. Moreover, both the
commercial software source code and commercial
software development data are not accessible for
most academic institutions. Without examining
real-world source code and real-world develop-
ment data, it is unlikely that the academia could

9 more pages are available in the full version of this document, which may be

purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/incorporating-freeopen-source-data-and-tools-in-

software-engineering-education/102345

Related Content

Learning by Simulations: A New and Effective Pedagogical Approach for Science, Engineering

and Technology Students in a Traditional Setting
Tukaram D. Dongale, Sarita S. Patiland Rajanish K. Kamat (2015). International Journal of Quality

Assurance in Engineering and Technology Education (pp. 13-25).

www.irma-international.org/article/learning-by-simulations/134874

A Brief History of Networked Classrooms to 2013: Effects, Cases, Pedagogy, and Implications

with New Developments
Louis Abrahamsonand Corey Brady (2014). International Journal of Quality Assurance in Engineering and

Technology Education (pp. 1-51).

www.irma-international.org/article/a-brief-history-of-networked-classrooms-to-2013/134452

A Diagnostic System Created for Evaluation and Maintenance of Building Constructions
Attila Koppány (2010). Web-Based Engineering Education: Critical Design and Effective Tools (pp. 199-

206).

www.irma-international.org/chapter/diagnostic-system-created-evaluation-maintenance/44737

Monitoring of Staffing Nanoindustry
Maxim M. Grekhov, Victor A. Byrkin, Oleg S. Vasiliev, Polina A. Likhomanovaand Alexey M. Grekhov

(2019). Handbook of Research on Engineering Education in a Global Context (pp. 488-500).

www.irma-international.org/chapter/monitoring-of-staffing-nanoindustry/210346

Digital Home: A Case Study Approach to Teaching Software Engineering Concepts
Salamah Salamah, Massood Towhidnejadand Thomas Hilburn (2014). Overcoming Challenges in Software

Engineering Education: Delivering Non-Technical Knowledge and Skills (pp. 333-347).

www.irma-international.org/chapter/digital-home/102338

http://www.igi-global.com/chapter/incorporating-freeopen-source-data-and-tools-in-software-engineering-education/102345
http://www.igi-global.com/chapter/incorporating-freeopen-source-data-and-tools-in-software-engineering-education/102345
http://www.irma-international.org/article/learning-by-simulations/134874
http://www.irma-international.org/article/a-brief-history-of-networked-classrooms-to-2013/134452
http://www.irma-international.org/chapter/diagnostic-system-created-evaluation-maintenance/44737
http://www.irma-international.org/chapter/monitoring-of-staffing-nanoindustry/210346
http://www.irma-international.org/chapter/digital-home/102338

