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INTRODUCTION

Since its introduction to the research community in 
1988, the Cellular Neural Network (CNN) (Chua 
& Yang, 1988) paradigm has become a fruitful soil 
for engineers and physicists, producing over 1,000 
published scientific papers and books in less than 20 
years (Chua & Roska, 2002), mostly related to Digital 
Image Processing (DIP). This Artificial Neural Net-
work (ANN) offers a remarkable ability of integrating 
complex computing processes into compact, real-time 
programmable analogic VLSI circuits as the ACE16k 
(Rodríguez et al., 2004) and, more recently, into FPGA 
devices (Perko et al., 2000).

CNN is the core of the revolutionary Analogic 
Cellular Computer (Roska et al., 1999), a program-
mable system based on the so-called CNN Universal 
Machine (CNN-UM) (Roska & Chua, 1993). Analogic 
CNN computers mimic the anatomy and physiology of 
many sensory and processing biological organs (Chua 
& Roska, 2002).

This article continues the review started in this 
Encyclopaedia under the title Basic Cellular Neural 
Network Image Processing.

BACKGROUND

The standard CNN architecture consists of an M × N 
rectangular array of cells C(i,j) with Cartesian coordi-
nates (i,j), i = 1, 2, …, M, j = 1, 2, …, N. Each cell or 
neuron C(i,j) is bounded to a sphere of influence Sr(i,j) 
of positive integer radius r, defined by:
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This set is referred as a (2r +1) × (2r +1) neigh-
bourhood. The parameter r controls the connectivity 

of a cell. When r > N /2 and M = N, a fully connected 
CNN is obtained, a case that corresponds to the classic 
Hopfield ANN model.

The state equation of any cell C(i,j) in the M × N 
array structure of the standard CNN may be described 
by:
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where C and R are values that control the transient 
response of the neuron circuit (just like an RC filter), I 
is generally a constant value that biases the state matrix 
Z = {zij}, and Sr is the local neighbourhood defined in 
(1), which controls the influence of the input data X = 
{xij} and the network output Y = {yij} for time t.

This means that both input and output planes interact 
with the state of a cell through the definition of a set of 
real-valued weights, A(i, j; k, l) and B(i, j; k, l), whose 
size is determined by r. The cloning templates A and 
B are called the feedback and feed-forward operators, 
respectively.

An isotropic CNN is typically defined with constant 
values for r, I, A and B, implying that for an input image 
X, a neuron C(i, j) is provided for each pixel (i, j), with 
constant weighted circuits defined by the feedback and 
feed-forward templates A and B. The neuron state value 
zij is adjusted with the bias parameter I, and passed as 
input to an output function of the form:
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The vast majority of the templates defined in the 
CNN-UM template compendium of (Chua & Roska, 
2002) are based on this isotropic scheme, using r = 1 
and binary images in the input plane. If no feedback 
(i.e. A = 0) is used, then the CNN behaves as a convolu-
tion network, using B as a spatial filter, I as a threshold 
and the piecewise linear output (3) as a limiter. Thus, 
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virtually any spatial filter from DIP theory can be 
implemented on such a feed-forward CNN, ensuring 
binary output stability via the definition of a central 
feedback absolute value greater than 1.

ADVANCED CNN IMAGE PROCESSING

In this section, a description of more complex CNN 
models is performed in order to provide a deeper insight 
into CNN design, including multi-layer structures and 
nonlinear templates, and also to illustrate its powerful 
DIP capabilities.

Nonlinear Templates

A problem often addressed in DIP edge detection is the 
robustness against noise (Jain, 1989). In this sense, the 
EDGE CNN detector for grey-scale images given by
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is a typical example of a weak-against-noise filter, as a 
result of fixed linear feed-forward template combined 
with excitatory feedback. One way to provide the 
detector with more robustness against noise is via the 
definition of a nonlinear B template of the form:
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This nonlinear template actually defines different 
coefficients for the surrounding pixels prior to perform 
the spatial filtering of the input image X. Thus, a CNN 
defined with nonlinear templates is generally dependent 
of X, and can not be treated as an isotropic model.

Just two values for the surrounding coefficients of B 
are allowed: one excitatory for greater than a threshold 
th luminance differences with the central pixel (i.e. edge 
pixels), and the other inhibitory, doubled in absolute 
value, for similar pixels, where th is usually set around 

0.5. The feedback template A = 2 remains unchanged, 
but the value for the bias I must be chosen from the 
following analysis:

For a given state zij element, the contribution wij 
of the feed-forward nonlinear filter of (5) may be 
expressed as:

( )
1.0 0.5

8 0.5
8 1.5

ij s e

e e

e

w p p

p p
p

= − ⋅ + ⋅

= − − + ⋅

= − + ⋅   (6)

where ps is the number of similar pixels in the 3 × 3 
neighbourhood and pe the rest of edge pixels. E.g. if 
the central pixel has 8 edge neighbours, wij = 12 – 8 = 
4, whereas if all its neighbours are similar to it, then 
wij = –8. Thus, a pixel will be selected as edge depend-
ing on the number of its edge neighbours, providing 
the possibility of noise reduction. For instance, edge 
detection for pixels with at least 3 edge neighbours 
forces that I ∈ (4, 5).

The main result is that the inclusion of nonlinearities 
in the definition of B coefficients and, by extension, 
the pixel-wise definition of the main CNN parameters 
gives rise to more powerful and complex DIP filters 
(Chua & Roska, 1993). 

Morphologic Operators

Mathematical Morphology is an important contributor 
to the DIP field. In the classic approach, every morpho-
logic operator is based on a series of simple concepts 
from Set Theory. Moreover, all of them can be divided 
into combinations of two basic operators: erosion and 
dilation (Serra, 1982). Both operators take two pieces of 
data as input: the binary input image and the so-called 
structuring element, which is usually represented by 
a 3×3 template. 

A pixel belongs to an object if it is active (i.e. its 
value is 1 or black), whereas the rest of pixels are 
classified as background, zero-valued elements. Basic 
morphologic operators are defined using only object 
pixels, marked as 1 in the structuring element. If a 
pixel is not used in the match, it is left blank. Both 
dilation and erosion operators may be defined by the 
structuring elements
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