
��

Adaptive Neural Algorithms for PCA and ICA
Radu Mutihac
University of Bucharest, Romania

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

Artificial neural networks (ANNs) (McCulloch & Pitts, 
1943) (Haykin, 1999) were developed as models of their 
biological counterparts aiming to emulate the real neural 
systems and mimic the structural organization and func-
tion of the human brain. Their applications were based 
on the ability of self-designing to solve a problem by 
learning the solution from data. A comparative study of 
neural implementations running principal component 
analysis (PCA) and independent component analysis 
(ICA) was carried out. Artificially generated data ad-
ditively corrupted with white noise in order to enforce 
randomness were employed to critically evaluate and 
assess the reliability of data projections. Analysis in both 
time and frequency domains showed the superiority of 
the estimated independent components (ICs) relative 
to principal components (PCs) in faithful retrieval of 
the genuine (latent) source signals.

Neural computation belongs to information pro-
cessing dealing with adaptive, parallel, and distributed 
(localized) signal processing. In data analysis, a com-
mon task consists in finding an adequate subspace of 
multivariate data for subsequent processing and inter-
pretation. Linear transforms are frequently employed 
in data model selection due to their computational and 
conceptual simplicity. Some common linear transforms 
are PCA, factor analysis (FA), projection pursuit (PP), 
and, more recently, ICA (Comon, 1994). The latter 
emerged as an extension of nonlinear PCA (Hotelling, 
1993) and developed in the context of blind source 
separation (BSS) (Cardoso, 1998) in signal and array 
processing. ICA is also related to recent theories of 
the visual brain (Barlow, 1991), which assume that 
consecutive processing steps lead to a progressive re-
duction in the redundancy of representation (Olshausen 
and Field, 1996).

This contribution is an overview of the PCA and 
ICA neuromorphic architectures and their associated 
algorithmic implementations increasingly used as ex-
ploratory techniques. The discussion is conducted on 
artificially generated sub- and super-Gaussian source 
signals. 

BACKGROUND

In neural computation, transforming methods amount 
to unsupervised learning, since the representation is 
only learned from data without any external control. 
Irrespective of the nature of learning, the neural adap-
tation may be formally conceived as an optimization 
problem: an objective function describes the task to be 
performed by the network and a numerical optimization 
procedure allows adapting network parameters (e.g., 
connection weights, biases, internal parameters). This 
process amounts to search or nonlinear programming 
in a quite large parameter space. However, any prior 
knowledge available on the solution might be efficiently 
exploited to narrow the search space. In supervised 
learning, the additional knowledge is incorporated in 
the net architecture or learning rules (Gold, 1996). A 
less extensive research was focused on unsupervised 
learning. In this respect, the mathematical methods 
usually employed are drawn from classical constrained 
multivariate nonlinear optimization and rely on the 
Lagrange multipliers method, the penalty or barrier 
techniques, and the classical numerical algebra tech-
niques, such as deflation/renormalization (Fiori, 2000), 
the Gram-Schmidt orthogonalization procedure, or the 
projection over the orthogonal group (Yang, 1995).

PCA and ICA Models

Mathematically, the linear stationary PCA and ICA mod-
els can be defined on the basis of a common data model. 
Suppose that some stochastic processes are represented 

by three random (column) vectors ( ) ( ),  Nt t ∈x n   

and ( ) Mt ∈s   with zero mean and finite covariance, 

with the components of ( ) ( ) ( ) ( ){ }1 2, ,..., Mt s t s t s t=s  
being statistically independent and at most one Gauss-
ian. Let A be a rectangular constant full column rank 
N M×  matrix with at least as many rows as columns 
( N M≥ ), and denote by t the sample index (i.e., time 
or sample point) taking the discrete values t = 1, 2, ..., 



  ��

Adaptive Neural Algorithms for PCA and ICA

A
T. We postulate the existence of a linear relationship 
among these variables like:

( ) ( ) ( ) ( ) ( )
1

  
M

i i
i

t t t s t t
=

= + = +∑x As n a n  (1)

Here ( )ts , ( )tx , ( )tn , and A are the sources, 
the observed data, the (unknown) noise in data, and 
the (unknown) mixing matrix, respectively, whereas 

, 1, 2,...,=i i Ma  are the columns of A. Mixing is sup-
posed to be instantaneous, so there is no time delay 

between a (latent) source variable ( )is t  mixing into 

an observable (data) variable ( )jx t , with i = 1, 2, ..., 
M and j = 1, 2, ..., N.

Consider that the stochastic vector process 

( ){ }∈Ntx  has the mean ( ){ } 0=E tx  and the covari-

ance matrix ( ) ( ){ } = TE t txC x x . The goal of PCA is 
to identify the dependence structure in each dimension 
and to come out with an orthogonal transform matrix 
W of size ×L N  from N  to L , <L N , such that 

the L-dimensional output vector ( ) ( )=t ty W x  suf-
ficiently represents the intrinsic features of the input 

data, and where the covariance matrix yC  of ( ){ }ty  
is a diagonal matrix D with the diagonal elements ar-

ranged in descending order, , 1, 1+ +≥i i i id d . The restoration 

of ( ){ }tx  from ( ){ }ty , say ( ){ }ˆ tx , is consequently 

given by ( ) ( )ˆ  = Tt tx W W x  (Figure 1). For a given 
L, PCA aims to find an optimal value of W, such as 

to minimize the error function ( ) ( ){ }ˆ= −J E t tx x . 
The rows in W  are the PCs of the stochastic process 

( ){ }tx and the eigenvectors ,  1, 2,...,j j L=c  of the input 

covariance matrix xC . The subspace spanned by the 

principal eigenvectors { }1 2, ,..., Lc c c  with L N< , is 
called the PCA subspace of dimensionality L.

The ICA problem can be formulated as following: 

given T realizations of ( )tx , estimate both the matrix 

A and the corresponding realizations of ( )ts . In BSS 
the task is somewhat relaxed to finding the waveforms 

( ){ }is t  of the sources knowing only the (observed) 

mixtures ( ){ }jx t . If no suppositions are made about 
the noise, the additive noise term is omitted in (1). A 
practical strategy is to include noise in the signals as 
supplementary term(s): hence the ICA model (Fig. 2) 
becomes:

( ) ( ) ( )
1

M

i i
i

t t s t
=

= = ∑x As a   (2)

The source separation consists in updating an unmix-

ing matrix ( )tB , without resorting to any information 
about the spatial mixing matrix A, so that the output vec-

tor ( ) ( ) ( ) t t t=y B x  becomes an estimate ( ) ( )ˆt t=y s  

of the original independent source signals ( )ts . The 

separating matrix ( )tB  is divided in two parts deal-
ing with dependencies in the first two moments, i.e., 

the whitening matrix ( )tV , and the dependencies in 

Figure 1. Schematic of the PCA model
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