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ABSTRACT

Conventional solar cells are usually manufactured from silicon, an inorganic material. This type of

solar cell has a high efficiency, up to 40%, but these cells are using very expensive materials of a high

purity and energy intensive processing techniques. This chapter is dedicated to a critical presentation of

hybrid solar cells. They are a combination of both organic and inorganic nanostructure materials and,

therefore, combine the properties and advantages of their components. Unfortunately, so far, the hybrid

solar cells have a low conversion efficiency of the sunlight, 6-7% (Kim, et al., 2007).

INTRODUCTION

Hybrid photovoltaic cells, classified as the third
and fourth generation solar cells, are a mix of
nanostructures of both organic (p-type conjugated
polymers, photosensitive dyes, carbon nanotubes,
etc.) and inorganic (nanostructures or nanopar-
ticles of TiO,, ZnO, PbS, PbSe, CdTe, CulnS,,
CulnSe , etc.) materials.

One of the materials (organic component)
acts as the photon absorber. In contrast to inor-
ganic semiconductors, photo excitation of organic
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semiconductors results in a strongly bounded
electron-hole pair, called an exciton (Ginger &
Greenham, 1999b). These electron-hole pairs are
only effectively separated at an interface between
a p-type (electron-donating) material and n-type
(electron-accepting) material represented by
the inorganic component of a hybrid solar cell,
Figure 1.

In order to have a favourable charge transfer
at the interface, the following condition must be
satisfied (Ginger & Greenham, 1999b): E *-
E,”>U_ where E, is the electron affinity, U is
the columbic binding energy of the exciton on the
donor and superscript A refers to the acceptor and
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Figure 1. Energy (E) diagram at the interface
donor/acceptor in a hybrid solar cell
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superscript D refers to the donor. For the exciton
binding energy in commonly used organic mate-
rials (polymers, oligomers, small molecules,
carbon nanotubes) the value ranges from 0.3 eV
to 1.4 eV, which is considerably higher than the
binding exciton energy for inorganic semiconduc-
tor materials, 0.02-0.04 eV (Scheblykin, Yartsev,
Pullerits, Gulbinas, & Sundstrom, 2007). In order
todissociate the exciton in abulk organic medium,
the thermal energy at room temperature (~0.025
eV) is not sufficient, therefore the exciton dis-
sociation is possible only at the interface between
the donor and the acceptor materials with favor-
able HOMO and LUMO energy levels.

The difference between the LUMOs (or
conductive band) of the donor and acceptor will
compensate the energy required for the dissocia-
tion and the transfer of the electron (Saunders &
Turner, 2008). After charge separation, the car-
riers (electrons and holes) are transported to the
electrodes through a percolation network.

The exciton generated in polymer has a time
scale from one picosecond to one nanosecond
(Shaw, Ruseckas, & Samuel, 2008) and the dif-
fusion length (at average distance an exciton can
diffuse through material before its annihilation
by recombination) is short in polymers (5-10 nm)
(Ginger & Greenham, 1999b). Only the exciton
generated within this length close to an acceptor
would contribute to the photocurrent of the cells.

For this reason, the hybrid solar cells often use a
nanostructured interpenetrating network of donor
and acceptor materials (bulk heterojunction) with
an enhanced interfacial area where the excitons
are separated into charge carriers (Saunders &
Turner, 2008). The bulk heterojunction concept
allows for more interfacial contact between the
organic (donor) and inorganic (acceptor) materials
than the phase separated bi-layer heterojunction.

Hybrid solar cells have some advantages over
the other types of photovoltaics (first and second-
generation cells) (Gledhill, Scott, & Gregg, 2005;
Huynh, Dittmer, & Alivisatos, 2002; McGehee,
2009; Ong & Levitsky, 2010):

e  Hybrid nanocomposite mixtures combine
the advantages of both type of materials:
the solution processing of organic semi-
conductors with the high charge-carriers
mobility and light absorption at longer
wavelengths if inorganic semiconductors;

e  The existence of an organic component al-
lows hybrid solar cells to be superior over
conventional semiconducting photovoltaics
in terms of cost efficiency, scalable wet pro-
cessing, and the variety of organic materi-
als, lightweight, and flexibility. Moreover,
the recent progress in advanced semicon-
ducting nanostructures in combination with
polymers and/or organic nanomaterials,
such as fullerenes and carbon nanotubes,
opens new opportunities to overcome the
8-10% barrier of light conversion efficiency
for hybrid solar cells in the near future (Li,
et al., 2009; Ong, Euler, & Levitsky, 2010).

CLASSIFICATION OF
HYBRID SOLAR CELLS

The hybrid solar cells classification depends on the
nature and morphology of organic and inorganic
components and it is presented in the Figure 2
(Ong & Levitsky, 2010).
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