IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Vehicular Fog Computing Paradigm: Scenarios and Applications

Vehicular Fog Computing Paradigm: Scenarios and Applications
View Sample PDF
Author(s): Jyoti Grover (Manipal University Jaipur, India)
Copyright: 2021
Pages: 16
Source title: Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-5339-8.ch087

Purchase

View Vehicular Fog Computing Paradigm: Scenarios and Applications on the publisher's website for pricing and purchasing information.

Abstract

The main objective of vehicular ad hoc networks (VANETs) is to improve driver safety and traffic efficiency. Most VANET applications are based on periodic exchange of safety messages between nearby vehicles and between vehicles and nearby road side communication units (e.g., traffic lights, road-side lights, etc.). This periodic communication generates huge amount of data that have typical storage, computation, and communication resources needs. In recent years, there has been huge developments in automotive industry, computing, and communication technologies. This has led to vehicular cloud computing (VCC) as a solution to satisfy the requirements of VANETs such as computing, storage, and networking resources. Vehicular fog computing (VFC) is a standard that comprehends cloud computing and related services to the proximity of a network. Since VANET applications have special mobility, low latency, and location awareness requirements, fog computing plays a significant role in VANET applications and services. In urban cities, vehicles parked at shopping malls, offices and similar other places are under-utilized. These can offer great opportunity and value to implement applications of VFC by utilizing vehicles as an infrastructure. In this chapter, we present real time scenarios and applications of VANET that can be implemented using VFC. VANET applications and quality of service can be enhanced by aggregating the resources of these vehicles. We discuss different types of scenarios of moving and parked vehicles as computational, communication, storage and network infrastructures. We have also discussed the challenges and open problems to implement VFC system. This chapter provides the thorough understanding of novel research paradigm and about vehicular communication infrastructures.

Related Content

Sushruta Mishra, Sunil Kumar Mohapatra, Brojo Kishore Mishra, Soumya Sahoo. © 2021. 24 pages.
Carlos Santos, Helena InĂ¡cio, Rui Pedro Marques. © 2021. 16 pages.
Akash Chowdhury, Swastik Mukherjee, Sourav Banerjee. © 2021. 26 pages.
Stojan Kitanov, Toni Janevski. © 2021. 28 pages.
Ramesh C. Poonia, Linesh Raja. © 2021. 27 pages.
Jens Kohler, Thomas Specht. © 2021. 27 pages.
Jagdish Chandra Patni. © 2021. 15 pages.
Body Bottom