IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Using a Knapsack Model to Optimize Continuous Building of a Hybrid Intelligent Tutoring System: Application to Information Technology Professionals

Using a Knapsack Model to Optimize Continuous Building of a Hybrid Intelligent Tutoring System: Application to Information Technology Professionals
View Sample PDF
Author(s): Maha Khemaja (University of Sousse, Tunisia)
Copyright: 2018
Pages: 19
Source title: Intelligent Systems: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-5643-5.ch065

Purchase


Abstract

Intelligent Tutoring Systems (ITS) provide an alternative to the traditional “one size fits all” approach. Their main aim is to adapt learning content, activities and paths to support learners. Meanwhile, during the last decades, advances in lightweight, portable devices and wireless technologies had drastically impacted Mobile and Ubiquitous environments' development which has driven opportunities towards more personalized, context-aware and dynamic learning processes. Moreover, mobile and hand held devices could be advantageous to incremental learning, based on very short and fine grained activities and resources delivery. However, measuring efficiency and providing the most relevant combination/orchestration of learning activities, resources and paths remains and open and challenging problem especially for enterprises where choices and decisions face several constraints as time, budget, targeted core competencies, etc. This paper, attempts to provide a knapsack based model and solution in order to implement ITS's intelligent decision making about best combination and delivery of e-training activities and resources especially in the context of fast changing Information and Communication Technology (ICT) domain and its required skills. An android and OSGi based prototype is implemented to validate the proposal through some realistic use cases.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom