The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Using a Hybrid System Composed of Neural Networks and Genetic Algorithms for Financial Forecasting
Abstract
The possibility of applying artificial neural networks in different areas determined the discovery of more complex structures. This chapter describes the characteristic aspects of using a back-propagation neural network algorithm in making financial forecasting improved by a different technology: genetic algorithms. These can help build an automatic artificial neural network by two adaptive processes: first, genetic search through the data entry window, the forecast horizon, network architecture space, and control parameters to select the best performers; second, back propagation learning in individual networks to evaluate the selected architectures. Thus, network performance population increases from generation to generation. This chapter also presents how genetic algorithms can be used both to find the best network architecture and to find the right combination of inputs, the best prediction horizon and the most effective weight. Finally, this study shows how the results obtained using these technologies can be applied to obtain decision support systems that can lead to increased performance in economic activity and financial projections.
Related Content
S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh.
© 2025.
16 pages.
|
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan.
© 2025.
22 pages.
|
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi.
© 2025.
22 pages.
|
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh.
© 2025.
24 pages.
|
U. Vignesh, Arpan Singh Parihar.
© 2025.
34 pages.
|
Sharmistha Dey, Krishan Veer Singh.
© 2025.
20 pages.
|
Kalpana Devi.
© 2025.
26 pages.
|
|
|