IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Tutorial to Developing Statistical Models for Predicting Disqualification Probability

A Tutorial to Developing Statistical Models for Predicting Disqualification Probability
View Sample PDF
Author(s): Ilmari Juutilainen (University of Oulu, Finland), Satu Tamminen (University of Oulu, Finland)and Juha Röning (University of Oulu, Finland)
Copyright: 2012
Pages: 32
Source title: Computational Methods for Optimizing Manufacturing Technology: Models and Techniques
Source Author(s)/Editor(s): J. Paulo Davim (University of Aveiro, Portugal)
DOI: 10.4018/978-1-4666-0128-4.ch015

Purchase

View A Tutorial to Developing Statistical Models for Predicting Disqualification Probability on the publisher's website for pricing and purchasing information.

Abstract

Different industries utilize statistical prediction models that predict the product properties in process planning, control, and optimization. An important aim is to decrease the number of disqualifications. The model can prevent disqualifications efficiently if the disqualification probability is predicted accurately. This study gives step-by-step instructions for developing, validating, comparing, and visualizing models that predict the disqualification probability with high accuracy. The work summarizes industrially applicable statistical modeling methods that are most suitable for the development of accurate predictors for the disqualification probability. Currently, the information on such statistical methods, e.g. quantile regression, modeling of distribution shape, and joint modeling of mean and deviation, is scattered in the existing literature. The main contribution of this work is that it pulls together this methodology into a unified framework which allows the comparative analysis of probability predictors that are based on the different approaches. The proposed modeling procedure (ProPred) is demonstrated using three manufacturing industry applications. In the case applications, the predictors generated using the ProPred procedure are 10-30% more efficient in avoiding disqualifications by means of process planning and control operations than the baseline predictors.

Related Content

Poshan Yu, Zixuan Zhao, Emanuela Hanes. © 2023. 29 pages.
Subramaniam Meenakshi Sundaram, Tejaswini R. Murgod, Madhu M. Nayak, Usha Rani Janardhan, Usha Obalanarasimhaiah. © 2023. 20 pages.
Rekha R. Nair, Tina Babu, Kishore S.. © 2023. 23 pages.
Wasswa Shafik. © 2023. 22 pages.
Jay Kumar Jain, Dipti Chauhan. © 2023. 24 pages.
George Makropoulos, Dimitrios Fragkos, Harilaos Koumaras, Nancy Alonistioti, Alexandros Kaloxylos, Vaios Koumaras, Theoni Dounia, Christos Sakkas, Dimitris Tsolkas. © 2023. 19 pages.
Shouvik Sanyal, Kalimuthu M., Thangaraja Arumugam, Aruna R., Balaji J., Ajitha Savarimuthu, Chandan Chavadi, Dhanabalan Thangam, Sendhilkumar Manoharan, Shasikala Patil. © 2023. 17 pages.
Body Bottom