IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Tribological Characteristics of Copper-Nano Carbon Crystalline Composites

Tribological Characteristics of Copper-Nano Carbon Crystalline Composites
View Sample PDF
Author(s): K. Rajkumar (SSN College of Engineering, India)and S. Aravindan (Indian Institute of Technology Delhi, India)
Copyright: 2015
Pages: 19
Source title: Processing Techniques and Tribological Behavior of Composite Materials
Source Author(s)/Editor(s): Rajnesh Tyagi (Indian Institute of Technology (BHU), Varanasi, India)and J. Paulo Davim (University of Aveiro, Portugal)
DOI: 10.4018/978-1-4666-7530-8.ch004

Purchase

View Tribological Characteristics of Copper-Nano Carbon Crystalline Composites on the publisher's website for pricing and purchasing information.

Abstract

In order to exploit the excellent properties, nano-particles can be used as reinforcement in the matrix of a metal. This chapter utilizes reinforcement of nano-particles through the innovative microwave processing technology for the fabrication of copper-crystalline carbon composites. In order to understand the friction and wear properties of microwave-sintered copper-CNT and copper-Nano Graphite (NG) composites, pin-on-disc wear experiments were carried out. High surface area of nano-graphite particles embedded in copper matrix exhibited high adherent carbonaceous tribo-layer at the contact surface. Copper-CNT and copper-nano graphite composites exhibited comparable tribological properties.

Related Content

Erfan Nouri, Alireza Kardan, Vahid Mottaghitalab. © 2024. 33 pages.
Mudassar Shahzad, Noor-ul-Huda Altaf, Muhammad Ayyaz, Sehrish Maqsood, Tayyba Shoukat, Mumtaz Ali, Muhammad Yasin Naz, Shazia Shukrullah. © 2024. 31 pages.
Erfan Nouri, Alireza Kardan, Vahid Mottaghitalab. © 2024. 32 pages.
Davronjon Abduvokhidov, Zhitong Chen, Jamoliddin Razzokov. © 2024. 16 pages.
Shahid Ali. © 2024. 25 pages.
Aamir Shahzad, Rabia Waris, Muhammad Kashif, Alina Manzoor, Maogang He. © 2024. 13 pages.
Soraya Trabelsi, Ezeddine Sediki. © 2024. 23 pages.
Body Bottom