IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Traffic Safety Implications of Travel Demand Management Policies: The Cases of Teleworking and Fuel Cost Increase

Traffic Safety Implications of Travel Demand Management Policies: The Cases of Teleworking and Fuel Cost Increase
View Sample PDF
Author(s): Ali Pirdavani (Hasselt University, Belgium), Tom Bellemans (Hasselt University, Belgium), Tom Brijs (Hasselt University, Belgium), Bruno Kochan (Hasselt University, Belgium)and Geert Wets (Hasselt University, Belgium)
Copyright: 2015
Pages: 26
Source title: Transportation Systems and Engineering: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-8473-7.ch055

Purchase


Abstract

Travel Demand Management (TDM) consists of a variety of policy measures that affect the transportation system's effectiveness by changing travel behavior. Although the primary objective to implement such TDM strategies is not to improve traffic safety, their impact on traffic safety should not be neglected. The main purpose of this study is to investigate differences in the traffic safety consequences of two TDM scenarios: a fuel-cost increase scenario (i.e. increasing the fuel price by 20%) and a teleworking scenario (i.e. 5% of the working population engages in teleworking). Since TDM strategies are usually conducted at a geographically aggregated level, crash prediction models that are used to evaluate such strategies should also be developed at an aggregate level. Moreover, given that crash occurrences are often spatially heterogeneous and are affected by many spatial variables, the existence of spatial correlation in the data is also examined. The results indicate the necessity of accounting for the spatial correlation when developing crash prediction models. Therefore, Zonal Crash Prediction Models (ZCPMs) within the geographically weighted generalized linear modeling framework are developed to incorporate the spatial variations in association between the Number Of Crashes (NOCs) (including fatal, severe, and slight injury crashes recorded between 2004 and 2007) and a set of explanatory variables. Different exposure, network, and socio-demographic variables of 2200 traffic analysis zones in Flanders, Belgium, are considered as predictors of crashes. An activity-based transportation model is adopted to produce exposure metrics. This enables a more detailed and reliable assessment while TDM strategies are inherently modeled in the activity-based models. In this chapter, several ZCPMs with different severity levels and crash types are developed to predict the NOCs. The results show considerable traffic safety benefits of conducting both TDM scenarios at an average level. However, there are certain differences when considering changes in NOCs by different crash types.

Related Content

Fani Antoniou, Marina Marinelli, Kleopatra Petroutsatou. © 2024. 31 pages.
Konstantinos Kirytopoulos, Vasileios Sarlis, Dimitris Marinakis, Theodoros Kalogeropoulos. © 2024. 26 pages.
Konstantina Ragazou, Ioannis Passas, Alexandros Garefalakis, Constantin Zopounidis. © 2024. 24 pages.
Vannie Naidoo, Rajen Chetty. © 2024. 19 pages.
Alexandros E. Grigoras, Georgios N. Aretoulis, Fani Antoniou, Stylianos Karatzas. © 2024. 30 pages.
Kleopatra Petroutsatou, Theodora Vagdatli, Marina Chronaki, Panagiota Samouilidou. © 2024. 24 pages.
Dimitra Korakaki, Stratos Kartsonakis, Evangelos Grigoroudis, Constantin Zopounidis. © 2024. 34 pages.
Body Bottom