IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Towards Optimal Microarray Universal Reference Sample Designs: An In-Silico Optimization Approach

Towards Optimal Microarray Universal Reference Sample Designs: An In-Silico Optimization Approach
View Sample PDF
Author(s): George Potamias (ICS-Forth, Greece), Sofia Kaforou (IMBB-Forth, Greece)and Dimitris Kafetzopoulos (ICS-Forth, Greece)
Copyright: 2013
Pages: 12
Source title: Bioinformatics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-3604-0.ch088

Purchase

View Towards Optimal Microarray Universal Reference Sample Designs: An In-Silico Optimization Approach on the publisher's website for pricing and purchasing information.

Abstract

In this paper, the authors present an assessment of the reliability of microarray experiments as well as their cross-laboratory/platform reproducibility rise as the major need. A critical challenge concerns the design of optimal universal reference rna (urr) samples to maximize detectable spots in two-color/channel microarray experiments, decrease the variability of microarray data, and finally ease the comparison between heterogeneous microarray datasets. Toward this target, the authors present an in-silico (binary) optimization process the solutions of which present optimal urr sample designs. Setting a cut-off threshold value over which a gene is considered as detectably expressed enables the process. Experimental results are quite encouraging and the related discussion highlights the suitability and flexibility of the approach.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom