The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Time Series Forecasting by Evolutionary Neural Networks
|
Author(s): Paulo Cortez (University of Minho, Portugal), Miguel Rocha (University of Minho, Portugal)and José Neves (University of Minho, Portugal)
Copyright: 2006
Pages: 24
Source title:
Artificial Neural Networks in Real-Life Applications
Source Author(s)/Editor(s): Juan R. Rabuñal (University of A Coruña, Spain)and Julian Dorado (University of A Coruña, Spain)
DOI: 10.4018/978-1-59140-902-1.ch003
Purchase
|
Abstract
This chapter presents a hybrid evolutionary computation/neural network combination for time series prediction. Neural networks are innate candidates for the forecasting domain due to advantages such as nonlinear learning and noise tolerance. However, the search for the ideal network structure is a complex and crucial task. Under this context, evolutionary computation, guided by the Bayesian Information Criterion, makes a promising global search approach for feature and model selection. A set of 10 time series, from different domains, were used to evaluate this strategy, comparing it with a heuristic model selection, as well as with conventional forecasting methods (e.g., Holt-Winters & Box-Jenkins methodology).
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|