IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Task Analysis and Motion Generation for Service Robots: With Reference to Region Segregation and Path Generation for Robotic Ironing

Task Analysis and Motion Generation for Service Robots: With Reference to Region Segregation and Path Generation for Robotic Ironing
View Sample PDF
Author(s): Jian S. Dai (University of London, UK)
Copyright: 2014
Pages: 20
Source title: Robotics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4607-0.ch003

Purchase


Abstract

This chapter is to summarise research in the direction of domestic service robots particularly with reference to robotic implementation of ironing process. The chapter presents the garment handling and ironing from a procedural point of view and discusses the devices for handling. The handling is categorised into several steps with common handling operations, resulting in categorisation of gripping and handling devices with potential applications to domestic automation. Based on this, ironing paths are explored with an orientation-position representation. This is followed by the introduction of development of folding and unfolding and by the region segregation based garment folding. This involves path analysis, folding algorithms, and mechanisms review for ironing. The paths produced from the ironing process are presented with mathematical models to be possibly implemented in robotic automation and their orientation is presented, dependent on the regions of garment. The orientation analysis is useful in finding the similarity in motion to determine the effective and efficient way of ironing a garment with orientation region diagrams and workspace presentation.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom