IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Swarm Intelligence for Non-Negative Matrix Factorization

Swarm Intelligence for Non-Negative Matrix Factorization
View Sample PDF
Author(s): Andreas Janecek (University of Vienna, Austria)and Ying Tan (Peking University, China)
Copyright: 2013
Pages: 25
Source title: Recent Algorithms and Applications in Swarm Intelligence Research
Source Author(s)/Editor(s): Yuhui Shi (Southern University of Science and Technology (SUSTech), China)
DOI: 10.4018/978-1-4666-2479-5.ch009

Purchase

View Swarm Intelligence for Non-Negative Matrix Factorization on the publisher's website for pricing and purchasing information.

Abstract

The Non-negative Matrix Factorization (NMF) is a special low-rank approximation which allows for an additive parts-based and interpretable representation of the data. This article presents efforts to improve the convergence, approximation quality, and classification accuracy of NMF using five different meta-heuristics based on swarm intelligence. Several properties of the NMF objective function motivate the utilization of meta-heuristics: this function is non-convex, discontinuous, and may possess many local minima. The proposed optimization strategies are two-fold: On the one hand, a new initialization strategy for NMF is presented in order to initialize the NMF factors prior to the factorization; on the other hand, an iterative update strategy is proposed, which improves the accuracy per runtime for the multiplicative update NMF algorithm. The success of the proposed optimization strategies are shown by applying them on synthetic data and data sets coming from the areas of spam filtering/email classification, and evaluate them also in their application context. Experimental results show that both optimization strategies are able to improve NMF in terms of faster convergence, lower approximation error, and better classification accuracy. Especially the initialization strategy leads to significant reductions of the runtime per accuracy ratio for both, the NMF approximation as well as the classification results achieved with NMF.

Related Content

Rafael Martí, Juan-José Pantrigo, Abraham Duarte, Vicente Campos, Fred Glover. © 2013. 21 pages.
Peng-Yeng Yin, Fred Glover, Manuel Laguna, Jia-Xian Zhu. © 2013. 20 pages.
Volodymyr P. Shylo, Oleg V. Shylo. © 2013. 10 pages.
Tabitha James, Cesar Rego. © 2013. 19 pages.
Gary G. Yen, Wen-Fung Leong. © 2013. 25 pages.
Shi Cheng, Yuhui Shi, Quande Qin. © 2013. 29 pages.
Xin-She Yang. © 2013. 12 pages.
Body Bottom