IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Support Vector Machine Based Mobile Robot Motion Control and Obstacle Avoidance

Support Vector Machine Based Mobile Robot Motion Control and Obstacle Avoidance
View Sample PDF
Author(s): Lihua Jiang (Northeastern University, China)and Mingcong Deng (Tokyo University of Agriculture and Technology, Japan)
Copyright: 2014
Pages: 27
Source title: Robotics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-4607-0.ch006

Purchase

View Support Vector Machine Based Mobile Robot Motion Control and Obstacle Avoidance on the publisher's website for pricing and purchasing information.

Abstract

Considering the noise effect during the navigation of a two wheeled mobile robot, SVM and LS-SVM based control schemes are discussed under the measured information with uncertainty, and in the different environments. The noise effect is defined as uncertainty in the measured data. One of them focuses on using a potential function and constructing a plane surface for avoiding the local minima in the static environments, where the controller is based on Lyapunov function candidate. Another one addresses to use a potential function and to define a new detouring virtual force for escaping from the local minima in the dynamic environments. Stability of the control system can be guaranteed. However, the motion control of the mobile robot would be affected by the noise effect. The SVM and LS-SVM for function estimation are used for estimating the parameter in the proposed controllers. With the estimated parameter, the noise effect during the navigation of the mobile robot can be reduced.

Related Content

Rashmi Rani Samantaray, Zahira Tabassum, Abdul Azeez. © 2024. 32 pages.
Sanjana Prasad, Deepashree Rajendra Prasad. © 2024. 25 pages.
Deepak Varadam, Sahana P. Shankar, Aryan Bharadwaj, Tanvi Saxena, Sarthak Agrawal, Shraddha Dayananda. © 2024. 24 pages.
Tarun Kumar Vashishth, Vikas Sharma, Kewal Krishan Sharma, Bhupendra Kumar, Sachin Chaudhary, Rajneesh Panwar. © 2024. 29 pages.
Mrutyunjaya S. Hiremath, Rajashekhar C. Biradar. © 2024. 30 pages.
C. L. Chayalakshmi, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar, Nayana Hegde. © 2024. 30 pages.
Amit Kumar Tyagi. © 2024. 29 pages.
Body Bottom