IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Supervised Learning of Fuzzy Logic Systems

Supervised Learning of Fuzzy Logic Systems
View Sample PDF
Author(s): M. Mohammadian (University of Canberra, Australia)
Copyright: 2009
Pages: 8
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch221

Purchase

View Supervised Learning of Fuzzy Logic Systems on the publisher's website for pricing and purchasing information.

Abstract

Conventionally modelling and simulation of complex nonlinear systems has been to construct a mathematical model and examine the system’s evolution or its control. This kind of approach can fail for many of the very large non-linear and complex systems being currently studied. With the invention of new advanced high-speed computers and the application of artificial intelligence paradigms new techniques have become available. Particularly neural networks and fuzzy logic for nonlinear modelling and genetic algorithms [Goldberg, D. (1989)] and evolutionary algorithms for optimisation methods have created new opportunities to solve complex systems [Bai, Y., Zhuang H. and Wang, D. (2006)]. This paper considers issues in design of multi-layer and hierarchical fuzzy logic systems. It proposes a decomposition technique for complex systems into hierarchical and multi-layered fuzzy logic sub-systems. The learning of fuzzy rules and internal parameters in a supervised manner is performed using genetic algorithms. The decomposition of complex nonlinear systems into hierarchical and multi-layered fuzzy logic sub-systems reduces greatly the number of fuzzy rules to be defined and improves the learning speed for such systems. In this paper a method for combining subsystems to create a hierarchical and multilayer fuzzy logic system is also described. Application areas considered are - the prediction of interest rate, unemployment rate predication and electricity usage prediction. Genetic Algorithms can be used as a tool for design and generation of fuzzy rules for a fuzzy logic system. This automatic design and generation of fuzzy rules, via genetic algorithms, can be categorised into two learning techniques namely, supervised and unsupervised. In supervised learning there are two distinct phases to the operation. In the first phase each individual is assessed based on the input signal that is propagated through the system producing output respond. The actual respond produced is then compared with a desired response, generating error signals that are then used as the fitness for the individual in the population of genetic algorithms. Supervised learning has successfully applied to solve some difficult problems. In this paper design and development of a genetic algorithm based supervised learning for fuzzy models with application to several problems is considered. A hybrid integrated architecture incorporating fuzzy logic and genetic algorithm can generate fuzzy rules that can be used in a fuzzy logic system for modelling, control and prediction

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom